Skip to main content

Overexpression of microRNA-100-5p attenuates the endothelial cell dysfunction by targeting HIPK2 under hypoxia and reoxygenation treatment

Abstract

MicroRNAs (miRNAs) are important regulators of many cellular processes, and the dysregulation of miRNAs is associated with various diseases. MiR-100-5p is revealed to be downregulated in gestational hypertension, while its underlying regulatory mechanism remains unclear. The pathological condition of gestational hypertension was mimicked by the hypoxia and reoxygenation (H/R) treatment to human placental microvascular endothelial cells (HPMECs). RT-qPCR and western blotting were conducted to detect the mRNA and protein expression of RNAs. HPMEC viability was assessed by CCK-8 assay. HPMEC angiogenesis was examined using tube formation assay. The concentrations of ANG-1 and ANG-2 in HPMECs were detected by ELISA. The binding relationship between miR-100-5p and homeodomain interacting protein kinase 2 (HIPK2) was investigated using luciferase reporter assay. MiR-100-5p was downregulated in HPMECs after H/R treatment. MiR-100-5p overexpression reversed the H/R-induced decrease in viability, angiogenesis of HPMECs. HIPK2 was targeted by miR-100-5p in HPMECs, and miR-100-5p negatively modulated HIPK2 expression at the mRNA and protein levels. MiR-100-5p activated the PI3K/AKT pathway by downregulating HIPK2. Rescue assays demonstrated that miR-100-5p promoted the viability and angiogenesis of H/R treated HPMECs by targeting HIPK2 to activate the PI3K/AKT pathway. MiR-100-5p overexpression inhibits the dysfunction of HPMECs under hypoxia and reoxygenation by downregulating HIPK2 to activate the PI3K/AKT pathway.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. https://doi.org/10.1016/j.cell.2009.01.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Beermann J, Piccoli MT, Viereck J, Thum T (2016) Non-coding RNAs in development and disease: background, mechanisms, and therapeutic. Approach Physiol Rev 96:1297–1325. https://doi.org/10.1152/physrev.00041.2015

    CAS  Article  Google Scholar 

  3. Birukov A et al (2020) Blood pressure and angiogenic markers in pregnancy: contributors to pregnancy-induced hypertension and offspring cardiovascular risk. Hypertension 76:901–909. https://doi.org/10.1161/hypertensionaha.119.13966

    CAS  Article  PubMed  Google Scholar 

  4. Brosnihan KB, Neves LA, Anton L, Joyner J, Valdes G, Merrill DC (2004) Enhanced expression of Ang-(1–7) during pregnancy. Braz J Med Biol Res 37:1255–1262. https://doi.org/10.1590/s0100-879x2004000800017

    CAS  Article  PubMed  Google Scholar 

  5. Cantwell R et al (2011) Saving Mothers’ Lives: reviewing maternal deaths to make motherhood safer: 2006–2008. The eighth report of the confidential enquiries into maternal deaths in the United Kingdom. BJOG 118(Suppl 1):1–203. https://doi.org/10.1111/j.1471-0528.2010.02847.x

    Article  PubMed  Google Scholar 

  6. Cerdeira AS, Agrawal S, Staff AC, Redman CW, Vatish M (2018) Angiogenic factors: potential to change clinical practice in pre-eclampsia? BJOG 125:1389–1395. https://doi.org/10.1111/1471-0528.15042

    CAS  Article  PubMed  Google Scholar 

  7. Chalazonitis A et al (2011) Homeodomain interacting protein kinase 2 regulates postnatal development of enteric dopaminergic neurons and glia via BMP signaling. J Neurosci 31:13746–13757. https://doi.org/10.1523/jneurosci.1078-11.2011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Chen P, Duan X, Li X, Li J, Ba Q, Wang H (2020) HIPK2 suppresses tumor growth and progression of hepatocellular carcinoma through promoting the degradation of HIF-1α. Oncogene 39:2863–2876. https://doi.org/10.1038/s41388-020-1190-y

    CAS  Article  PubMed  Google Scholar 

  9. D’Orazi G et al (2002) Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4:11–19. https://doi.org/10.1038/ncb714

    CAS  Article  PubMed  Google Scholar 

  10. Dittmann A et al (2014) The commonly used PI3-kinase probe LY294002 is an inhibitor of BET bromodomains. ACS Chem Biol 9:495–502. https://doi.org/10.1021/cb400789e

    CAS  Article  PubMed  Google Scholar 

  11. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874. https://doi.org/10.1038/nrg3074

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Hanssens M, Keirse MJ, Spitz B, Van Assche FA (1991) Measurement of individual plasma angiotensins in normal pregnancy and pregnancy-induced hypertension. J Clin Endocrinol Metab 73:489–494. https://doi.org/10.1210/jcem-73-3-489

    CAS  Article  PubMed  Google Scholar 

  13. Hedderson MM, Ferrara A (2008) High blood pressure before and during early pregnancy is associated with an increased risk of gestational diabetes mellitus. Diabetes Care 31:2362–2367. https://doi.org/10.2337/dc08-1193

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hofmann TG, Stollberg N, Schmitz ML, Will H (2003) HIPK2 regulates transforming growth factor-beta-induced c-Jun NH(2)-terminal kinase activation and apoptosis in human hepatoma cells. Cancer Res 63:8271–8277

    CAS  PubMed  Google Scholar 

  15. Hromadnikova I, Kotlabova K, Hympanova L, Krofta L (2016) Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripheral blood. Thromb Res 137:126–140. https://doi.org/10.1016/j.thromres.2015.11.032

    CAS  Article  PubMed  Google Scholar 

  16. Hromadnikova I, Kotlabova K, Dvorakova L, Krofta L (2019) Postpartum profiling of microRNAs involved in pathogenesis of cardiovascular/cerebrovascular diseases in women exposed to pregnancy-related complications. Int J Cardiol 291:158–167. https://doi.org/10.1016/j.ijcard.2019.05.036

    Article  PubMed  Google Scholar 

  17. Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M (2012) microRNAs in cancer management. Lancet Oncol 13:e249–e258. https://doi.org/10.1016/s1470-2045(12)70073-6

    CAS  Article  PubMed  Google Scholar 

  18. Lai W, Yu L (2020) Elevated MicroRNA 183 impairs trophoblast migration and invasiveness by downregulating foxp1 expression and elevating gng7 expression during preeclampsia. Mol Cell Biol. https://doi.org/10.1128/mcb.00236-20

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li Y et al (2020) SPEN induces miR-4652-3p to target HIPK2 in nasopharyngeal carcinoma. Cell Death Dis 11:509. https://doi.org/10.1038/s41419-020-2699-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Liu DF, Li SM, Zhu QX, Jiang W (2018) The involvement of miR-155 in blood pressure regulation in pregnant hypertension rat via targeting FOXO3a. Eur Rev Med Pharmacol Sci 22:6591–6598. https://doi.org/10.26355/eurrev_201810_16133

    Article  PubMed  Google Scholar 

  21. Long Y et al (2020) The expression and biological function of chemokine CXCL12 and receptor CXCR4/CXCR7 in placenta accreta spectrum disorders. J Cell Mol Med 24:3167–3182. https://doi.org/10.1111/jcmm.14990

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Luo X, Yao ZW, Qi HB, Liu DD, Chen GQ, Huang S, Li QS (2011) Gadd45α as an upstream signaling molecule of p38 MAPK triggers oxidative stress-induced sFlt-1 and sEng upregulation in preeclampsia. Cell Tissue Res 344:551–565. https://doi.org/10.1007/s00441-011-1164-z

    CAS  Article  PubMed  Google Scholar 

  23. Ma HY, Cu W, Sun YH, Chen X (2020) MiRNA-203a-3p inhibits inflammatory response in preeclampsia through regulating IL24  Eur Rev Med Pharmacol Sci 24:5223–5230. https://doi.org/10.26355/eurrev_202005_21304

    Article  PubMed  PubMed Central  Google Scholar 

  24. Männistö T, Mendola P, Vääräsmäki M, Järvelin MR, Hartikainen AL, Pouta A, Suvanto E (2013) Elevated blood pressure in pregnancy and subsequent chronic disease risk. Circulation 127:681–690. https://doi.org/10.1161/circulationaha.112.128751

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mundim GJ, Paschoini MC, Araujo Júnior E, Da Silva Costa F, Rodrigues Júnior V (2016) Assessment of angiogenesis modulators in pregnant women with pre-eclampsia: a case-control study. Arch Gynecol Obst 293:369–375. https://doi.org/10.1007/s00404-015-3823-x

    CAS  Article  Google Scholar 

  26. Nadar SK, Karalis I, Al Yemeni E, Blann AD, Lip GY (2005) Plasma markers of angiogenesis in pregnancy induced hypertension. Thromb Haemost 94:1071–1076. https://doi.org/10.1160/th05-03-0167

    CAS  Article  PubMed  Google Scholar 

  27. Nardinocchi L et al (2009) Transcriptional regulation of hypoxia-inducible factor 1alpha by HIPK2 suggests a novel mechanism to restrain tumor growth . Biochim Biophys Acta 1793:368–377. https://doi.org/10.1016/j.bbamcr.2008.10.013

    CAS  Article  PubMed  Google Scholar 

  28. Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy (2000) Am J Obst Gynecol 183:S1-Ss22

    Article  Google Scholar 

  29. Tan M et al (2014) Downregulation of homeodomain-interacting protein kinase-2 contributes to bladder cancer metastasis by regulating Wnt signaling. J Cell Biochem 115:1762–1767. https://doi.org/10.1002/jcb.24842

    CAS  Article  PubMed  Google Scholar 

  30. Tanaka M et al (2007) Racial disparity in hypertensive disorders of pregnancy in New York State: a 10-year longitudinal population-based study. Am J Public Health 97:163–170. https://doi.org/10.2105/ajph.2005.068577

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vest AR, Cho LS (2014) Hypertension in pregnancy. Curr Atheroscler Rep 16:395. https://doi.org/10.1007/s11883-013-0395-8

    Article  PubMed  Google Scholar 

  32. Vlahos CJ, Matter WF, Hui KY, Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269:5241–5248

    CAS  Article  Google Scholar 

  33. Wallis AB, Saftlas AF, Hsia J, Atrash HK (2008) Secular trends in the rates of preeclampsia, eclampsia, and gestational hypertension, United States, 1987–2004. Am J Hypertens 21:521–526. https://doi.org/10.1038/ajh.2008.20

    Article  PubMed  Google Scholar 

  34. Wang Y, Du X, Wang J (2020) Transfer of miR-15a-5p by placental exosomes promotes pre-eclampsia progression by regulating PI3K/AKT signaling pathway via CDK1. Mol Immunol 128:277–286. https://doi.org/10.1016/j.molimm.2020.10.019

    CAS  Article  PubMed  Google Scholar 

  35. Yang Z et al (2014) Downregulated Krüppel-like factor 8 is involved in decreased trophoblast invasion under hypoxia-reoxygenation conditions . Reprod Sci (Thousand Oaks, CA) 21:72–81. https://doi.org/10.1177/1933719113488448

    CAS  Article  Google Scholar 

  36. Zhang J et al (2007) Essential function of HIPK2 in TGFbeta-dependent survival of midbrain dopamine neurons. Nat Neurosci 10:77–86. https://doi.org/10.1038/nn1816

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are truly grateful of the help of all participates offered during our research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaoqin Chen.

Ethics declarations

Conflict of interest

No conflicts of interest were discovered during this research

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Sun, Y., Shu, X. et al. Overexpression of microRNA-100-5p attenuates the endothelial cell dysfunction by targeting HIPK2 under hypoxia and reoxygenation treatment. J Mol Histol (2021). https://doi.org/10.1007/s10735-021-10002-4

Download citation

Keywords

  • miR-100-5p
  • HIPK2
  • Gestational hypertension