Melatonin preconditioning of bone marrow-derived mesenchymal stem cells promotes their engraftment and improves renal regeneration in a rat model of chronic kidney disease

Abstract

Bone marrow-derived mesenchymal stem cells (BMMSCs) transplantation has shown to be effective in treating chronic kidney disease. However, the effectiveness of this strategy is constrained by low homing and survival rate of transplanted cells in the injured organs. Therefore, developing strategies to improve homing and cell survival rate and therapeutic potential in cell-based therapies seems necessary. The purpose of this study is to evaluate the effect of pretreating BMMSCs with melatonin (MT) on the prosurvival and renoprotective of transplanted cells into the irreversible model of unilateral ureteral obstruction. Adult male Sprague–Dawley rats were randomized into four groups: Sham, UUO, UUO + BMMSCs, and UUO + BMMSCs + MT. The results of our study demonstrated that preconditioning with MT enhanced homing of BMMSCs into the injured kidney. MT reduced the number of TUNEL positive transplanted cells in the UUO + BMMSCs + MT group. The UUO + BMMSCs + MT group showed lower expressions of TGF-β1, α-SMA and TNF-α at both gene and protein levels but higher expression of E-cadherin compared with the UUO + BMMSCs group. In addition, MT preconditioned BMMSCs ameliorated basement membrane disruption and histological status of injured renal tubules and also reduced fibrosis in damaged kidneys. In conclusion, our results show that stem cells pretreated by MT may represent a feasible approach for improving the beneficial effects of stem cell therapy and significantly enhance their survival after transplantation to the injured kidney.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abouzaripour M, Kashani IR, Pasbakhsh P, Atlasy N (2015) Intravenous transplantation of very small embryonic like stem cells in treatment of diabetes mellitus. Avicenna J Med Biotechnol 7(1):22

    PubMed  PubMed Central  Google Scholar 

  2. Asanuma H, Vanderbrink BA, Campbell MT, Hile KL, Zhang H, Meldrum DR et al (2011) Arterially delivered mesenchymal stem cells prevent obstruction-induced renal fibrosis. J Surg Res 168(1):e51–e59

    PubMed  CAS  Article  Google Scholar 

  3. Bai Z, Deng X, Li J, Li D, Cao H, Liu Z et al (2013) Arterially transplanted mesenchymal stem cells in a mouse reversible unilateral ureteral obstruction model: in vivo bioluminescence imaging and effects on renal fibrosis. Chin Med J (England) 126(10):1890–1894

    CAS  Google Scholar 

  4. Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M, Toietta G (2017) Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int J Mol Sci 18(10):2087

    PubMed Central  Article  CAS  Google Scholar 

  5. Cromer Berman SM, Walczak P, Bulte JW (2011) Tracking stem cells using magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(4):343–355

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. Da Silva AF, Silva K, Reis LA, Teixeira VP, Schor N (2015) Bone marrow-derived mesenchymal stem cells and their conditioned medium attenuate fibrosis in an irreversible model of unilateral ureteral obstruction. Cell Transplant 24(12):2657–2666

    PubMed  Article  Google Scholar 

  7. De Becker A, Van Riet I (2016) Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J Stem Cells 8(3):73

    PubMed  PubMed Central  Article  Google Scholar 

  8. Fragiadaki M, Mason RM (2011) Epithelial-mesenchymal transition in renal fibrosis—evidence for and against. Int J Exp Pathol 92(3):143–150

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  9. Granero-Molto F, Weis JA, Longobardi L, Spagnoli A (2008) Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair. Expert Opin Biol Ther 8(3):255–268

    CAS  Article  Google Scholar 

  10. Han YS, Kim SM, Lee JH, Jung SK, Noh H, Lee SH (2018) Melatonin protects chronic kidney disease mesenchymal stem cells against senescence via PrPC-dependent enhancement of the mitochondrial function. J Pineal Res 2018:e12535

    Google Scholar 

  11. Hongbao M, Ma M, Yan Y (2015) Renal ureteral obstruction and alpha-smooth muscle actin (alpha-SMA) research literatures. Rep Opin 7(12):41–63

    Google Scholar 

  12. Howes J-M, Bihan D, Slatter DA, Hamaia SW, Packman LC, Knauper V et al (2014) The recognition of collagen and triple-helical toolkit peptides by MMP-13: sequence specificity for binding and cleavage. J Biol Chem. https://doi.org/10.1074/jbc.M114.583443

    PubMed  PubMed Central  Article  Google Scholar 

  13. Hrenak J, Paulis L, Repova K, Aziriova S, J Nagtegaal E, Reiter RJ, Simko F (2015) Melatonin and renal protection: novel perspectives from animal experiments and human studies. Curr Pharm Des 21(7):936–949

    PubMed  CAS  Article  Google Scholar 

  14. Hu C, Li L (2018) Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J Cell Mol Med 22(3):1428–1442

    PubMed  PubMed Central  Article  Google Scholar 

  15. Jang H-S, Padanilam BJ (2015) Simultaneous deletion of Bax and Bak is required to prevent apoptosis and interstitial fibrosis in obstructive nephropathy. Am J Physiol Ren Physiol 309(6):F540–F550

    CAS  Article  Google Scholar 

  16. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  17. Lee S-Y, Han SM, Kim J-E, Chung K-Y, Han K-H (2013) Expression of E-cadherin in pig kidney. J Vet Sci 14(4):381–386

    PubMed  PubMed Central  Article  Google Scholar 

  18. Li Y, Wingert RA (2013) Regenerative medicine for the kidney: stem cell prospects & challenges. Clin Transl Med 2(1):11

    PubMed  PubMed Central  Article  Google Scholar 

  19. Li Q, Yu P, Wang W, Zhang P, Yang H, Li S et al (2014) Gene expression profiles of various cytokines in mesenchymal stem cells derived from umbilical cord tissue and bone marrow following infection with human cytomegalovirus. Cell Mol Biol Lett 19(1):140

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  20. Li L, Chen X, Wang WE, Zeng C (2016) How to improve the survival of transplanted mesenchymal stem cell in ischemic heart? Stem Cell Int. https://doi.org/10.1155/2016/9682757

    Article  Google Scholar 

  21. Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15(1):1–12

    PubMed  CAS  Article  Google Scholar 

  22. Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7(12):684

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  23. Liu X, Gong Y, Xiong K, Ye Y, Xiong Y, Zhuang Z et al (2013) Melatonin mediates protective effects on inflammatory response induced by interleukin-1 beta in human mesenchymal stem cells. J Pineal Res 55(1):14–25

    PubMed  CAS  Article  Google Scholar 

  24. Liu Y, He H, Huang F (2014) Melatonin in pain modulation: analgesic or proalgesic? Pain Stud Treat 2(02):50

    Article  Google Scholar 

  25. Mias C, Trouche E, Seguelas MH, Calcagno F, Dignat-George F, Sabatier F et al (2008) Ex vivo pretreatment with melatonin improves survival, proangiogenic/mitogenic activity, and efficiency of mesenchymal stem cells injected into ischemic kidney. Stem Cells 26(7):1749–1757

    PubMed  CAS  Article  Google Scholar 

  26. Mortezaee K, Khanlarkhani N, Sabbaghziarani F, Nekoonam S, Majidpoor J, Hosseini A et al (2017) Preconditioning with melatonin improves therapeutic outcomes of bone marrow-derived mesenchymal stem cells in targeting liver fibrosis induced by CCl4. Cell Tissue Res 369(2):303–312

    PubMed  CAS  Article  Google Scholar 

  27. Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 12:87–117

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  28. Pohlers D, Brenmoehl J, Löffler I, Müller CK, Leipner C, Schultze-Mosgau S et al (2009) TGF-β and fibrosis in different organs—molecular pathway imprints. Biochim Biophys Acta (BBA) Mol Basis Dis.1792(8):746–756

    CAS  Article  Google Scholar 

  29. Puri TS, Shakaib MI, Chang A, Mathew L, Olayinka O, Minto AW et al (2010) Chronic kidney disease induced in mice by reversible unilateral ureteral obstruction is dependent on genetic background. Am J Physiol Ren Physiol 298(4):F1024–F1032

    CAS  Article  Google Scholar 

  30. Quimby J, Dow S (2015) Novel treatment strategies for feline chronic kidney disease: a critical look at the potential of mesenchymal stem cell therapy. Vet J 204(3):241–246

    PubMed  CAS  Article  Google Scholar 

  31. Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W et al. (2010) Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol. https://doi.org/10.4049/jimmunol.0902023

    Article  PubMed  PubMed Central  Google Scholar 

  32. Renal DU System (2013) USRDS 2013 Annual Data Report: atlas of chronic kidney disease and end-stage renal disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases

  33. Sart S, Ma T, Li Y (2014) Preconditioning stem cells for in vivo delivery. BioRes Open Access 3(4):137–149

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  34. Semedo P, Correa-Costa M, Antonio Cenedeze M, Maria Avancini Costa Malheiros D, Antonia dos Reis M, Shimizu MH et al (2009) Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells 27(12):3063–3073

    PubMed  CAS  Google Scholar 

  35. Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25(5):829–848

    PubMed  Article  Google Scholar 

  36. Techasen A, Namwat N, Loilome W, Bungkanjana P, Khuntikeo N, Puapairoj A et al (2012) Tumor necrosis factor-α (TNF-α) stimulates the epithelial–mesenchymal transition regulator Snail in cholangiocarcinoma. Med Oncol 29(5):3083–3091

    PubMed  CAS  Article  Google Scholar 

  37. Tsuji K, Kitamura S (2015) Trophic factors from tissue stem cells for renal regeneration. Stem Cells Int. https://doi.org/10.1155/2015/537204

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yamauchi Y, Kohyama T, Takizawa H, Kamitani S, Desaki M, Takami K et al (2010) Tumor necrosis factor-α enhances both epithelial-mesenchymal transition and cell contraction induced in A549 human alveolar epithelial cells by transforming growth factor-β1. Exp Lung Res 36(1):12–24

    PubMed  CAS  Article  Google Scholar 

  39. Yang H-W, Lee S-A, Shin J-M, Park I-H, Lee H-M (2017) Glucocorticoids ameliorate TGF-β1-mediated epithelial-to-mesenchymal transition of airway epithelium through MAPK and Snail/Slug signaling pathways. Sci Rep 7(1):3486

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. Yeagy BA, Cherqui S (2011) Kidney repair and stem cells: a complex and controversial process. Pediatr Nephrol 26(9):1427–1434

    PubMed  Article  Google Scholar 

  41. Yu L-m, Di W-c, Dong X, Li Z, Zhang Y, Xue X-d et al (2018) Melatonin protects diabetic heart against ischemia-reperfusion injury, role of membrane receptor-dependent cGMP-PKG activation. Biochim Biophys Acta (BBA) Mol Basis Dis 1864(2): 563–578

    CAS  Article  Google Scholar 

  42. Zeisberg M, Bonner G, Maeshima Y, Colorado P, Müller GA, Strutz F et al (2001) Renal fibrosis: collagen composition and assembly regulates epithelial-mesenchymal transdifferentiation. Am J Pathol 159(4):1313–1321

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  43. Zhang HM, Zhang Y (2014) Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 57(2):131–146

    PubMed  CAS  Article  Google Scholar 

  44. Zheng G, Lyons JG, Tan TK, Wang Y, Hsu T-T, Min D et al (2009) Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial-mesenchymal transition downstream of transforming growth factor-β1 in renal tubular epithelial cells. Am J Pathol 175(2):580–591

    PubMed  PubMed Central  CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Tehran University of medical sciences and health service, Tehran, Iran (Grant No. 97-02-30-34469).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iraj Ragerdi Kashani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saberi, K., Pasbakhsh, P., Omidi, A. et al. Melatonin preconditioning of bone marrow-derived mesenchymal stem cells promotes their engraftment and improves renal regeneration in a rat model of chronic kidney disease. J Mol Hist 50, 129–140 (2019). https://doi.org/10.1007/s10735-019-09812-4

Download citation

Keywords

  • Melatonin
  • Bone marrow derived mesenchymal stem cells
  • Preconditioning
  • Chronic kidney disease
  • Renal fibrosis