Banta KL, Wang X, Das P, Winoto A (2018) B cell lymphoma 2 (Bcl-2) residues essential for Bcl-2’s apoptosis-inducing interaction with Nur77/Nor-1 orphan steroid receptors. J Biol Chem 293:4724–4734. https://doi.org/10.1074/jbc.RA117.001101
CAS
Article
PubMed
PubMed Central
Google Scholar
Bavarsad K, Barreto GE, Hadjzadeh MA, Sahebkar A (2018) Protective effects of curcumin against ischemia-reperfusion injury in the nervous system. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1169-7
Article
PubMed
Google Scholar
Chen HZ et al (2012) The orphan receptor TR3 suppresses intestinal tumorigenesis in mice by downregulating Wnt signalling. Gut 61:714–724. https://doi.org/10.1136/gutjnl-2011-300783
CAS
Article
PubMed
Google Scholar
Cheng Z et al (2011) Mitochondrial translocation of Nur77 mediates cardiomyocyte apoptosis. Eur Heart J 32:2179–2188. https://doi.org/10.1093/eurheartj/ehq496
CAS
Article
PubMed
PubMed Central
Google Scholar
Chenn A (2008) Wnt/beta-catenin signaling in cerebral cortical development. Organogenesis 4:76–80
Article
PubMed
PubMed Central
Google Scholar
Chun SK et al (2018) Loss of sirtuin 1 and mitofusin 2 contributes to enhanced ischemia/reperfusion injury in aged livers. Aging Cell. https://doi.org/10.1111/acel.12761
Article
PubMed
PubMed Central
Google Scholar
Fan J et al (2017) Therapeutic hypothermia attenuates global cerebral reperfusion-induced mitochondrial damage by suppressing dynamin-related protein 1 activation and mitochondria-mediated apoptosis in a cardiac arrest rat model. Neurosci Lett 647:45–52. https://doi.org/10.1016/j.neulet.2017.02.065
CAS
Article
PubMed
Google Scholar
Gan L et al (2018) Protective effect of mitochondrial-targeted antioxidant MitoQ against iron ion (56)Fe radiation induced brain injury in mice. Toxicol Appl Pharmacol 341:1–7. https://doi.org/10.1016/j.taap.2018.01.003
CAS
Article
PubMed
Google Scholar
Garcia-Ruiz JM et al (2017) Bloodless reperfusion with the oxygen carrier HBOC-201 in acute myocardial infarction: a novel platform for cardioprotective probes delivery. Basic Res Cardiol 112:17. https://doi.org/10.1007/s00395-017-0605-6
CAS
Article
PubMed
Google Scholar
Geng C, Wei J, Wu C (2018) Yap-Hippo pathway regulates cerebral hypoxia-reoxygenation injury in neuroblastoma N2a cells via inhibiting ROCK1/F-actin/mitochondrial fission pathways. Acta Neurol Belg. https://doi.org/10.1007/s13760-018-0944-6
Article
PubMed
Google Scholar
Ho DH, Je AR, Lee H, Son I, Kweon HS, Kim HG, Seol W (2018) LRRK2 kinase activity induces mitochondrial fission in microglia via Drp1 and modulates neuroinflammation. Exp Neurobiol 27:171–180. https://doi.org/10.5607/en.2018.27.3.171
Article
PubMed
PubMed Central
Google Scholar
Hong H, Tao T, Chen S, Liang C, Qiu Y, Zhou Y, Zhang R (2017) MicroRNA-143 promotes cardiac ischemia-mediated mitochondrial impairment by the inhibition of protein kinase Cepsilon. Basic Res Cardiol 112:60. https://doi.org/10.1007/s00395-017-0649-7
CAS
Article
PubMed
Google Scholar
Hu M et al (2017) Celastrol-induced Nur77 interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy. Mol Cell 66:141–153.e146. https://doi.org/10.1016/j.molcel.2017.03.008
CAS
Article
PubMed
PubMed Central
Google Scholar
Ji WK, Hatch AL, Merrill RA, Strack S, Higgs HN (2015) Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. Elife 4:e11553. https://doi.org/10.7554/eLife.11553
Article
PubMed
PubMed Central
Google Scholar
Jin X et al (2017) Dysregulation of INF2-mediated mitochondrial fission in SPOP-mutated prostate cancer. PLoS Genet 13:e1006748. https://doi.org/10.1371/journal.pgen.1006748
CAS
Article
PubMed
PubMed Central
Google Scholar
Jin Q et al (2018) DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol 14:576–587. https://doi.org/10.1016/j.redox.2017.11.004
CAS
Article
PubMed
Google Scholar
Jokinen R, Pirnes-Karhu S, Pietilainen KH, Pirinen E (2017) Adipose tissue NAD(+)-homeostasis, sirtuins and poly(ADP-ribose) polymerases -important players in mitochondrial metabolism and metabolic health. Redox Biol 12:246–263. https://doi.org/10.1016/j.redox.2017.02.011
CAS
Article
PubMed
PubMed Central
Google Scholar
Jovancevic N et al (2017) Medium-chain fatty acids modulate myocardial function via a cardiac odorant receptor. Basic Res Cardiol 112:13. https://doi.org/10.1007/s00395-017-0600-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Kang Z, Zhu H, Luan H, Han F, Jiang W (2014) Curculigoside A induces angiogenesis through VCAM-1/Egr-3/CREB/VEGF signaling pathway. Neuroscience 267:232–240. https://doi.org/10.1016/j.neuroscience.2014.02.050
CAS
Article
PubMed
Google Scholar
Lan R et al (2018) Xiao-Xu-Ming decoction reduced mitophagy activation and improved mitochondrial function in cerebral ischemia and reperfusion injury. Behav Neurol 2018:4147502. https://doi.org/10.1155/2018/4147502
Article
PubMed
PubMed Central
Google Scholar
Lee HY, Back K (2017a) Melatonin is required for H2 O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. J Pineal Res. https://doi.org/10.1111/jpi.12379
Article
PubMed
Google Scholar
Lee K, Back K (2017b) Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. J Pineal Res. https://doi.org/10.1111/jpi.12392
Article
PubMed
Google Scholar
Li R, Xin T, Li D, Wang C, Zhu H, Zhou H (2018) Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: the role of the ERK-CREB pathway and Bnip3-mediated mitophagy. Redox Biol 18:229–243. https://doi.org/10.1016/j.redox.2018.07.011
CAS
Article
PubMed
PubMed Central
Google Scholar
Martin JL, Gruszczyk AV, Beach TE, Murphy MP, Saeb-Parsy K (2018) Mitochondrial mechanisms and therapeutics in ischaemia reperfusion injury. Pediatr Nephrol. https://doi.org/10.1007/s00467-018-3984-5
Article
PubMed
PubMed Central
Google Scholar
Nauta TD, van den Broek M, Gibbs S, van der Pouw-Kraan TC, Oudejans CB, van Hinsbergh VW, Koolwijk P (2017) Identification of HIF-2alpha-regulated genes that play a role in human microvascular endothelial sprouting during prolonged hypoxia in vitro. Angiogenesis 20:39–54. https://doi.org/10.1007/s10456-016-9527-4
CAS
Article
PubMed
Google Scholar
Park H et al (2018) Extracellular vesicles derived from hypoxic human mesenchymal stem cells attenuate GSK3beta expression via miRNA-26a in an ischemia-reperfusion injury model. Yonsei Med J 59:736–745. https://doi.org/10.3349/ymj.2018.59.6.736
Article
PubMed
PubMed Central
Google Scholar
Perez MJ, Jara C, Quintanilla RA (2018) Contribution of Tau pathology to mitochondrial impairment in neurodegeneration. Front Neurosci 12:441. https://doi.org/10.3389/fnins.2018.00441
Article
PubMed
PubMed Central
Google Scholar
Reynolds MS et al (2016) Beta-cell deletion of Nr4a1 and Nr4a3 nuclear receptors impedes mitochondrial respiration and insulin secretion. Am J Physiol Endocrinol Metab 311:E186–E201. https://doi.org/10.1152/ajpendo.00022.2016
Article
PubMed
Google Scholar
Russell AL, Richardson MR, Bauman BM, Hernandez IM, Saperstein S, Handa RJ, Wu TJ (2018) Differential responses of the HPA axis to mild blast traumatic brain injury in male and female mice. Endocrinology 159:2363–2375. https://doi.org/10.1210/en.2018-00203
Article
PubMed
Google Scholar
Shen YQ et al (2018) Combination of melatonin and rapamycin for head and neck cancer therapy: suppression of AKT/mTOR pathway activation, and activation of mitophagy and apoptosis via mitochondrial function regulation. J Pineal Res. https://doi.org/10.1111/jpi.12461
Article
PubMed
Google Scholar
Shi ZY et al (2017) Protective effect of autophagy in neural ischemia and hypoxia: negative regulation of the Wnt/beta-catenin pathway. Int J Mol Med 40:1699–1708. https://doi.org/10.3892/ijmm.2017.3158
Article
PubMed
PubMed Central
Google Scholar
Singh V, Krishan P, Shri R (2018) Antioxidant-mediated neuroprotection by Allium schoenoprasum L. leaf extract against ischemia reperfusion-induced cerebral injury in mice. J Basic Clin Physiol Pharmacol 29:403–410. https://doi.org/10.1515/jbcpp-2017-0070
CAS
Article
PubMed
Google Scholar
Steffen J, Koehler CM (2018) ER-mitochondria contacts: actin dynamics at the ER control mitochondrial fission via calcium release. J Cell Biol 217:15–17. https://doi.org/10.1083/jcb.201711075
CAS
Article
PubMed
PubMed Central
Google Scholar
Stepanova A, Kahl A, Konrad C, Ten V, Starkov AS, Galkin A (2017) Reverse electron transfer results in a loss of flavin from mitochondrial complex I: potential mechanism for brain ischemia reperfusion injury. J Cereb Blood Flow Metab 37:3649–3658. https://doi.org/10.1177/0271678X17730242
CAS
Article
PubMed
PubMed Central
Google Scholar
Tang Y et al (2016) Hypothermia-induced ischemic tolerance is associated with Drp1 inhibition in cerebral ischemia-reperfusion injury of mice. Brain Res 1646:73–83. https://doi.org/10.1016/j.brainres.2016.05.042
CAS
Article
PubMed
Google Scholar
Wei Z, Li HH (2015) IGFBP-3 may trigger osteoarthritis by inducing apoptosis of chondrocytes through Nur77 translocation. Int J Clin Exp Pathol 8:15599–15610
CAS
PubMed
PubMed Central
Google Scholar
Xing XS, Liu F, He ZY (2015) Akt regulates beta-catenin in a rat model of focal cerebral ischemia-reperfusion injury. Mol Med Rep 11:3122–3128. https://doi.org/10.3892/mmr.2014.3000
CAS
Article
PubMed
Google Scholar
Yu W, Gao D, Jin W, Liu S, Qi S (2018) Propofol prevents oxidative stress by decreasing the ischemic accumulation of succinate in focal cerebral ischemia-reperfusion injury. Neurochem Res 43:420–429. https://doi.org/10.1007/s11064-017-2437-z
CAS
Article
PubMed
Google Scholar
Zhao H, Luo Y, Chen L, Zhang Z, Shen C, Li Y, Xu R (2018) Sirt3 inhibits cerebral ischemia-reperfusion injury through normalizing Wnt/beta-catenin pathway and blocking mitochondrial fission. Cell Stress Chaperones. https://doi.org/10.1007/s12192-018-0917-y
Article
PubMed
PubMed Central
Google Scholar
Zhou H et al (2017) Mff-dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening. J Am Heart Assoc. https://doi.org/10.1161/JAHA.116.005328
Article
PubMed
PubMed Central
Google Scholar
Zhou H et al (2018a) Effects of melatonin on fatty liver disease: the role of NR4A1/DNA-PKcs/p53 pathway, mitochondrial fission, and mitophagy. J Pineal Res. https://doi.org/10.1111/jpi.12450
Article
PubMed
Google Scholar
Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ, Chen Y (2018b) Protective role of melatonin in cardiac ischemia-reperfusion injury: from pathogenesis to targeted therapy. J Pineal Res. https://doi.org/10.1111/jpi.12471
Article
PubMed
Google Scholar
Zhou H, Shi C, Hu S, Zhu H, Ren J, Chen Y (2018c) BI1 is associated with microvascular protection in cardiac ischemia reperfusion injury via repressing Syk-Nox2-Drp1-mitochondrial fission pathways. Angiogenesis 21:599–615. https://doi.org/10.1007/s10456-018-9611-z
CAS
Article
PubMed
Google Scholar
Zhou H et al (2018d) NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2alpha. Basic Res Cardiol 113:23. https://doi.org/10.1007/s00395-018-0682-1
CAS
Article
PubMed
Google Scholar
Zhou H, Wang S, Hu S, Chen Y, Ren J (2018e) ER-mitochondria microdomains in cardiac ischemia-reperfusion injury: a fresh perspective. Front Physiol 9:755. https://doi.org/10.3389/fphys.2018.00755
Article
PubMed
PubMed Central
Google Scholar
Zhou J et al (2018f) Mitochondrial-targeted antioxidant MitoQ provides neuroprotection and reduces neuronal apoptosis in experimental traumatic brain injury possibly via the Nrf2-ARE pathway. Am J Transl Res 10:1887–1899
PubMed
PubMed Central
Google Scholar