Skip to main content

Restoration of SMN expression in mesenchymal stem cells derived from gene-targeted patient-specific iPSCs

Abstract

Spinal muscular atrophy (SMA) is primarily a neurodegenerative disease caused by the homozygous deletion of the survival motor neuron 1 (SMN1) gene, thereby reducing SMN protein expression. Mesenchymal stem cells (MSCs) have been implicated in the treatment of SMA. In the present study, we overexpressed exogenous SMN1 at the ribosomal DNA (rDNA) locus of induced pluripotent stem cells (iPSCs) generated from a SMA patient using an rDNA-targeting vector. The gene-targeted patient iPSCs differentiated into MSCs (SMN1-MSCs). A 2.1-fold higher expression level of SMN protein was detected in SMN1-MSCs than that detected in MSCs derived from patient iPSCs, and the results of the immunofluorescence analysis showed no difference in the quantity of SMN nuclear structures (gems) between SMN1-MSCs and MSCs derived from normal human iPSCs (h-MSCs). These findings provide a novel strategy for obtaining gene-targeted MSCs for potential clinical applications in autologous cell-based therapy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdullah RH, Yaseen NY, Salih SM, Al-Juboory AA, Hassan A, Al-Shammari AM (2016) Induction of mice adult bone marrow mesenchymal stem cells into functional motor neuron-like cells. J Chem Neuroanat 77:129–142. https://doi.org/10.1016/j.jchemneu.2016.07.003

    CAS  Article  PubMed  Google Scholar 

  2. Arnold AS, Gueye M, Ronde P, Warter JM, Poindron P, Gies JP (2002) Construction of a plasmid containing human SMN, the SMA determining gene, coupled to EGFP. Plasmid 47:79–87. https://doi.org/10.1006/plas.2002.1564

    CAS  Article  PubMed  Google Scholar 

  3. Bagher Z et al (2016) Differentiation of Wharton’s jelly-derived mesenchymal stem cells into motor neuron-like cells on three-dimensional collagen-grafted nanofibers. Mol Neurobiol 53:2397–2408. https://doi.org/10.1007/s12035-015-9199-x

    CAS  Article  PubMed  Google Scholar 

  4. Boda B et al (2004) Survival motor neuron SMN1 and SMN2 gene promoters: identical sequences and differential expression in neurons and non-neuronal cells. Eur J Hum Genet 12:729–737. https://doi.org/10.1038/sj.ejhg.5201217

    CAS  Article  PubMed  Google Scholar 

  5. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7:14. https://doi.org/10.1186/1471-2121-7-14

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen Q et al (1998) Sequence of a 131-kb region of 5q13.1 containing the spinal muscular atrophy candidate genes SMN and NAIP. Genomics 48:121–127. https://doi.org/10.1006/geno.1997.5141

    CAS  Article  PubMed  Google Scholar 

  7. Choi MR et al (2010) Selection of optimal passage of bone marrow-derived mesenchymal stem cells for stem cell therapy in patients with amyotrophic lateral sclerosis. Neurosci Lett 472:94–98. https://doi.org/10.1016/j.neulet.2010.01.054

    CAS  Article  PubMed  Google Scholar 

  8. Cui B, Li E, Yang B, Wang B (2014) Human umbilical cord blood-derived mesenchymal stem cell transplantation for the treatment of spinal cord injury. Exp Ther Med 7:1233–1236. https://doi.org/10.3892/etm.2014.1608

    Article  PubMed  PubMed Central  Google Scholar 

  9. DiDonato CJ, Parks RJ, Kothary R (2003) Development of a gene therapy strategy for the restoration of survival motor neuron protein expression: implications for spinal muscular atrophy therapy. Hum Gene Ther 14:179–188. https://doi.org/10.1089/104303403321070874

    CAS  Article  PubMed  Google Scholar 

  10. Diederichs S, Tuan RS (2014) Functional comparison of human-induced pluripotent stem cell-derived mesenchymal cells and bone marrow-derived mesenchymal stromal cells from the same donor. Stem Cells Dev 23:1594–1610. https://doi.org/10.1089/scd.2013.0477

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dominguez E et al (2011) Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet 20:681–693. https://doi.org/10.1093/hmg/ddq514

    CAS  Article  PubMed  Google Scholar 

  12. Fan Y, Wu DZ, Gong YQ, Xu R, Hu ZB (2002) Metabolic responses induced by thrombin in human umbilical vein endothelial cells. Biochem Biophys Res Commun 293:979–985. https://doi.org/10.1016/S0006-291X(02)00339-X

    CAS  Article  PubMed  Google Scholar 

  13. Finkel RS et al (2016) Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388:3017–3026. https://doi.org/10.1016/S0140-6736(16)31408-8

    CAS  Article  PubMed  Google Scholar 

  14. Heeschen C et al (2004) Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109:1615–1622. https://doi.org/10.1161/01.CIR.0000124476.32871.E3

    Article  PubMed  Google Scholar 

  15. Hoch RV, Soriano P (2003) Roles of PDGF in animal development. Development 130:4769–4784. https://doi.org/10.1242/dev.00721

    CAS  Article  PubMed  Google Scholar 

  16. Hu Y et al (2013) Nonviral gene targeting at rDNA locus of human mesenchymal stem cells. Biomed Res Int 2013:135189. https://doi.org/10.1155/2013/135189

    PubMed  PubMed Central  Google Scholar 

  17. Kilian O, Flesch I, Wenisch S, Taborski B, Jork A, Schnettler R, Jonuleit T (2004) Effects of platelet growth factors on human mesenchymal stem cells and human endothelial cells in vitro. Eur J Med Res 9:337–344

    CAS  PubMed  Google Scholar 

  18. Kolb SJ, Kissel JT (2011) Spinal muscular atrophy: a timely review. Arch Neurol 68:979–984. https://doi.org/10.1001/archneurol.2011.74

    Article  PubMed  Google Scholar 

  19. Lian Q et al (2010) Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121:1113–1123. https://doi.org/10.1161/CIRCULATIONAHA.109.898312

    Article  PubMed  Google Scholar 

  20. Liu X et al (2007) Non-viral ex vivo transduction of human hepatocyte cells to express factor VIII using a human ribosomal DNA-targeting vector. J Thromb Haemost 5:347–351. https://doi.org/10.1111/j.1538-7836.2007.02355.x

    CAS  Article  PubMed  Google Scholar 

  21. Liu X et al (2012) Targeting of the human coagulation factor IX gene at rDNA locus of human embryonic stem cells. PLoS ONE 7:e37071. https://doi.org/10.1371/journal.pone.0037071

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Lorson CL, Rindt H, Shababi M (2010) Spinal muscular atrophy: mechanisms and therapeutic strategies. Hum Mol Genet 19:R111–R118. https://doi.org/10.1093/hmg/ddq147

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Pang J et al (2016) Targeting of the human F8 at the multicopy rDNA locus in hemophilia A patient-derived iPSCs using TALENickases. Biochem Biophys Res Commun 472:144–149. https://doi.org/10.1016/j.bbrc.2016.02.083

    CAS  Article  PubMed  Google Scholar 

  24. Paton DM (2017) Nusinersen: antisense oligonucleotide to increase SMN protein production in spinal muscular atrophy. Drugs Today 53:327–337. https://doi.org/10.1358/dot.2017.53.6.2652413

    CAS  Article  PubMed  Google Scholar 

  25. Pearn J (1980) Classification of spinal muscular atrophies. Lancet 1:919–922

    CAS  Article  PubMed  Google Scholar 

  26. Rashnonejad A, Gunduz C, Susluer SY, Onay H, Durmaz B, Bandehpour M, Ozkinay F (2016) In vitro gene manipulation of spinal muscular atrophy fibroblast cell line using gene-targeting fragment for restoration of SMN protein expression. Gene Ther 23:10–17. https://doi.org/10.1038/gt.2015.92

    CAS  Article  PubMed  Google Scholar 

  27. Sakai K, Ohta T, Minoshima S, Kudoh J, Wang Y, de Jong PJ, Shimizu N (1995) Human ribosomal RNA gene cluster: identification of the proximal end containing a novel tandem repeat sequence. Genomics 26:521–526

    CAS  Article  PubMed  Google Scholar 

  28. Stults DM, Killen MW, Pierce HH, Pierce AJ (2008) Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res 18:13–18. https://doi.org/10.1101/gr.6858507

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Vercelli A et al (2008) Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 31:395–405. https://doi.org/10.1016/j.nbd.2008.05.016

    CAS  Article  PubMed  Google Scholar 

  30. Villanova M, Bach JR (2015) Allogeneic mesenchymal stem cell therapy outcomes for three patients with spinal muscular atrophy type 1. Am J Phys Med Rehabil 94:410–415. https://doi.org/10.1097/PHM.0000000000000309

    Article  PubMed  Google Scholar 

  31. Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene(SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15:228–237. 10.1002/(SICI)1098-1004(200003)15:3<228::AID-HUMU3>3.0.CO;2-9

    CAS  Article  PubMed  Google Scholar 

  32. Wu Y et al (2014) TALE nickase mediates high efficient targeted transgene integration at the human multi-copy ribosomal DNA locus. Biochem Biophys Res Commun 446:261–266. https://doi.org/10.1016/j.bbrc.2014.02.099

    CAS  Article  PubMed  Google Scholar 

  33. Yang J et al (2009) A non-viral vector for potential DMD gene therapy study by targeting a minidystrophin-GFP fusion gene into the hrDNA locus. Acta Biochim Biophys Sin 41:1053–1060

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the National Natural Science Foundation of China (81400928, 81271944, and 81272540), the National Key R&D Program of China (2016YFC0905100) and the Fundamental Research Funds for the Central Universities of Central South University (2016zzts168).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xionghao Liu or Desheng Liang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, M., Liu, C., Xia, Y. et al. Restoration of SMN expression in mesenchymal stem cells derived from gene-targeted patient-specific iPSCs. J Mol Hist 49, 27–37 (2018). https://doi.org/10.1007/s10735-017-9744-1

Download citation

Keywords

  • rDNA locus
  • Gene targeting
  • iPSCs
  • MSCs
  • SMN1