Skip to main content
Log in

A novel method using an acedan-based Zn(DPA) probe to monitor ATP localization in an in vivo system

  • Brief Communication
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

In in vitro and in vivo systems, understanding localization and the functional role of ATP is essential, but effective methods to monitor ATP in cells and tissues are limited. Although quinacrine dihydrochloride is a well-known fluorescent dye used to detect ATP, it is limited in its use because it shows non-specific nuclear staining both in vitro and in vivo. A commercial luciferin-luciferase bioluminescence assay has also been used to detect ATP, but it can not be easily used in vivo. Thus, to effectively monitor ATP in vivo, we employed a novel two-photon ATP fluorescent probe, acedan-based Zn(DPA). Using the acedan-based Zn(DPA) probe, we show that this probe produces high quality images of ATP in lung, spleen, liver and spinal cord tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    Article  PubMed  CAS  Google Scholar 

  • Alund M, Olson L (1979) Depolarization-induced decreases in fluorescence intensity of gastro-intestinal quinacrine-binding nerves. Brain Res 166:121–137

    Article  PubMed  CAS  Google Scholar 

  • Belai A, Burnstock G (1994) Evidence for coexistence of ATP and nitric oxide in non-adrenergic, non-cholinergic (NANC) inhibitory neurones in the rat ileum, colon and anococcygeus muscle. Cell Tissue Res 278:197–200

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1997) The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology 36:1127–1139

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1999) Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J Anat 194:335–342

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2012) Discovery of purinergic signalling, the initial resistance and current explosion of interest. Br J Pharmacol 167:238–255

    Article  PubMed  CAS  Google Scholar 

  • Bush KT, Keller SH, Nigam SK (2000) Genesis and reversal of the ischemic phenotype in epithelial cells. J Clin Invest 106:621–626

    Article  PubMed  CAS  Google Scholar 

  • Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2001) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354–1362

    Article  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  PubMed  CAS  Google Scholar 

  • Dou Y, Wu HJ, Li HQ, Qin S, Wang YE, Li J, Lou HF, Chen Z, Li XM, Luo QM, Duan S (2012) Microglial migration mediated by ATP-induced ATP release from lysosomes. Cell Res 22:1022–1033

    Article  PubMed  CAS  Google Scholar 

  • Fiske CH, Subbarow Y (1929) Phosphorus compounds of muscle and liver. Science 70:381–382

    Article  PubMed  CAS  Google Scholar 

  • Gilfillan AM, Rooney SA (1987) Purinoceptor agonists stimulate phosphatidylcholine secretion in primary cultures of adult rat type II pneumocytes. Biochim Biophys Acta 917:18–23

    Article  PubMed  CAS  Google Scholar 

  • Gonzales E, Julien B, Serrière-Lanneau V, Nicou A, Doignon I, Lagoudakis L, Garcin I, Azoulay D, Duclos-Vallée JC, Castaing D, Samuel D, Hernandez-Garcia A, Awad SS, Combettes L, Thevananther S, Tordjmann T (2010) ATP release after partial hepatectomy regulates liver regeneration in the rat. J Hepatol 52:54–62

    Article  PubMed  CAS  Google Scholar 

  • Greenwood D (1995) Conflicts of interest: the genesis of synthetic antimalarial agents in peace and war. J Antimicrob Chemother 36:857–872

    Article  PubMed  CAS  Google Scholar 

  • Jo YH, Schlichter R (1999) Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat Neurosci 2:241–245

    Article  PubMed  CAS  Google Scholar 

  • Knowles JR (1980) Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem 49:877–919

    Article  PubMed  CAS  Google Scholar 

  • Lazarowski ER, Tarran R, Grubb BR, van Heusden CA, Okada S, Boucher RC (2004) Nucleotide release provides a mechanism for airway surface liquid homeostasis. J Biol Chem 279:36855–36864

    Article  PubMed  CAS  Google Scholar 

  • Lober G (1981) The fluorescence of dye nucleic-acid complexes. J Lumin 22:221–265

    Article  Google Scholar 

  • Pankratov Y, Lalo U, Krishtal O, Verkhratsky A (2002) Ionotropic P2X purinoreceptors mediate synaptic transmission in rat pyramidal neurones of layer II/III of somato-sensory cortex. J Physiol 542:529–536

    Article  PubMed  CAS  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  • Rao AS, Kim D, Nam H, Jo H, Kim KH, Ban C, Ahn KH (2012) A turn-on two-photon fluorescent probe for ATP and ADP. Chem Commun (Camb) 48:3206–3208

    Article  Google Scholar 

  • Rice WR, Singleton FM (1986) P2-purinoceptors regulate surfactant secretion from rat isolated alveolar type II cells. Br J Pharmacol 89:485–491

    Article  PubMed  CAS  Google Scholar 

  • Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839

    Article  PubMed  CAS  Google Scholar 

  • Taylor AL, Kudlow BA, Marrs KL, Gruenert DC, Guggino WB, Schwiebert EM (1998) Bioluminescence detection of ATP release mechanisms in epithelia. Am J Physiol 275:1391–1406

    Google Scholar 

  • Thevananther S, Sun H, Li D, Arjunan V, Awad SS, Wyllie S, Zimmerman TL, Goss JA, Karpen SJ (2004) Extracellular ATP activates c-jun N-terminal kinase signaling and cell cycle progression in hepatocytes. Hepatology 39:393–402

    Article  PubMed  CAS  Google Scholar 

  • Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783

    Article  PubMed  CAS  Google Scholar 

  • Vaughn BP, Robson SC, Burnstock G (2012) Pathological roles of purinergic signaling in the liver. J Hepatol 57:916–920

    Article  PubMed  CAS  Google Scholar 

  • Vrbova G, Mehra N, Shanmuganathan H, Tyreman N, Schachner M, Gordon T (2009) Chemical communication between regenerating motor axons and Schwann cells in the growth pathway. Eur J Neurosci 30:366–375

    Article  PubMed  Google Scholar 

  • Weisblum B, De Haseth PL (1972) Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylaterich regions in DNA. Proc Natl Acad Sci USA 69:629–632

    Article  PubMed  CAS  Google Scholar 

  • Yegutkin GG, Mikhailov A, Samburski SS, Jalkanen S (2006) The detection of micromolar pericellular ATP pool on lymphocyte surface by using lymphoid ecto-adenylate kinase as intrinsic ATP sensor. Mol Biol Cell 17:3378–3385

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Global Frontier Project grant (2012M3A6A4054932) of the National Research Foundation funded by the Ministry of Education, Science and Technology of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyang Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.J., Rao, A.S., Shin, Y.H. et al. A novel method using an acedan-based Zn(DPA) probe to monitor ATP localization in an in vivo system. J Mol Hist 44, 241–247 (2013). https://doi.org/10.1007/s10735-012-9474-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-012-9474-3

Keywords

Navigation