Skip to main content

Advertisement

Log in

Morphological aspects of neuromuscular junctions and gene expression of nicotinic acetylcholine receptors (nAChRs) in skeletal muscle of rats with heart failure

  • Original paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

HF is syndrome initiated by a reduction in cardiac function and it is characterized by the activation of compensatory mechanisms. Muscular fatigue and dyspnoea are the more common symptoms in HF; these may be due in part to specific skeletal muscle myopathy characterized by reduced oxidative capacity, a shift from slow fatigue resistant type I to fast less fatigue resistant type II fibers and downregulation of myogenic regulatory factors (MRFs) gene expression that can regulate gene expression of nicotinic acetylcholine receptors (nAChRs). In chronic heart failure, skeletal muscle phenotypic changes could influence the maintenance of the neuromuscular junction morphology and nAChRs gene expression during this syndrome. Two groups of rats were studied: control (CT) and Heart Failure (HF), induced by a single intraperitoneal injection of monocrotaline (MCT). At the end of the experiment, HF was evaluated by clinical signs and animals were sacrificed. Soleus (SOL) muscles were removed and processed for morphological, morphometric and molecular NMJ analyses. Our major finding was an up-regulation in the gene expression of the alpha1 and epsilon subunits of nAChR and a spot pattern of nAChR in SOL skeletal muscle in this acute monocrotaline induced HF. Our results suggest a remodeling of nAChR alpha1 and epsilon subunit during heart failure and may provide valuable information for understanding the skeletal muscle myopathy that occurs during this syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arias HR (1998) Binding sites for exogenous and endogenous non-competitive inhibitors of the nicotinic acetylcholine receptor. Biochim Biophys Acta 1376:173–220

    PubMed  CAS  Google Scholar 

  • Bernocchi P, Cargnoni A, Vescovo G, Libera LD, Parrinello G, Boraso A, Ceconi C, Ferrari R (2003) Skeletal muscle abnormalities in rats with experimentally induced heart hypertrophy and failure. Basic Res Cardiol 98:114–123

    Article  PubMed  CAS  Google Scholar 

  • Carvalho RF, Cicogna AC, Campos GE, De Assis JM, Padovani CR, Okoshi MP, Pai-Silva MD (2003) Myosin heavy chain expression and atrophy in rat skeletal muscle during transition from cardiac hypertrophy to heart failure. Int J Exp Pathol 84:201–206

    Article  PubMed  CAS  Google Scholar 

  • Carvalho RF, Cicogna AC, Campos GE, Lopes FS, Sugizaki MM, Nogueira CR, Pai-Silva MD (2006a) Heart failure alters MyoD and MRF4 expression in rat skeletal muscle. Int J Exp Pathol 87:219–225

    Article  PubMed  CAS  Google Scholar 

  • Carvalho RF, Dariolli R, Justulin Junior LA, Sugizaki MM, Okoshi MP, Cicogna AC, Felisbino SL, Dal Pai-Silva M (2006b) Heart failure alters matrix metalloproteinase gene expression and activity in rat skeletal muscle. Int J Exp Pathol 87:437–443

    Article  PubMed  CAS  Google Scholar 

  • Carvalho RF, Castan EP, Coelho CA, Lopes FS, Almeida FLA, Michelin A, Souza RWA, Araújo JP, Cicogna AC, Dal Pai-Silva M (2010) Heart failure increases atrogin-1 and MuRF1 gene expression in skeletal muscle with fiber type-specific atrophy. J Mol Histol 41:81–87

    Article  PubMed  CAS  Google Scholar 

  • Charbonnier F, Della Gaspara B, Armand AS, Lécolle S, Launay T, Gallien CL, Chanoine C (2003) Specific activation of the acetylcholine receptor subunit genes by Myod family proteins. J Biol Chem 278:33169–33174

    Article  PubMed  CAS  Google Scholar 

  • De Sousa E, Veksler V, Bigard X, Mateo P, Ventura-Clapier R (2000) Heart failure affects mitochondrial but not myofibrillar intrinsic properties of skeletal muscle. Circulation 102:1847–1853

    PubMed  Google Scholar 

  • Engel AG (1994) The neuromuscular junction. In: Engel AG, Franzini-Armstrong G (eds) Myology: basic and clinical, vol 1, 2nd edn. Edition International McGraw, New York, pp 261–302

    Google Scholar 

  • Gattenlöhner S, Schneider C, Thamer C, Klein R, Roggendorf W, Gohlke F, Niethammer C, Czub S, Vincent A, Müller-Hermelink HK, Marx A (2002) Expression of fetal type acetylcholine receptor is restricted to type 1 muscle fibres in human neuromuscular disorders. Brain 125:1309–1319

    Article  PubMed  Google Scholar 

  • Hughes BW, Kusner LL, Kaminski HJ (2006) Molecular architecture of the neuromuscular junction. Muscle Nerve 33:445–461

    Article  PubMed  CAS  Google Scholar 

  • Jin Tae-Un, Wernig A, Witzemann V (2008) Changes in acetylcholine receptor function induce shifts in muscle fiber type composition. FEBS J 275:2042–2054

    Article  PubMed  CAS  Google Scholar 

  • Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ (2007) Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J 274:3799–3845

    Article  PubMed  CAS  Google Scholar 

  • Libera LD, Zennaro R, Sandri M, Ambrosio GB, Vescovo G (1999) Apoptosis and atrophy in rat slow skeletal muscles in chronic heart failure. Am J Physiol 277:C982–C986

    PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Google Scholar 

  • Lipkin DP, Jones DA, Round JM, Poole-Wilson PA (1988) Abnormalities of skeletal muscle in patients with chronic heart failure. Int J Cardiol 18:187–195

    Article  PubMed  CAS  Google Scholar 

  • Lopes FS, Carvalho RF, Campos GE, Sugizaki MM, Padovani CR, Nogueira CR, Cicogna AC, Pai-Silva MD (2008) Down-regulation of MyoD gene expression in rat diaphragm muscle with heart failure. Int J Exp Path 89:216–222

    Article  Google Scholar 

  • Ma J, Shen J, Garrett JP, Lee CA, Li Z, Elsaidi GA, Ritting A, Hick J, Tan KH, Smith TL, Smith BP, Koman LA (2007) Gene expression of myogenic regulatory factors, nicotinic acetylcholine receptor subunits, and GAP-43 in skeletal muscle following denervation in a rat model. J Orthop Res 25:1498–1505

    Article  PubMed  CAS  Google Scholar 

  • Mancini DM, Walter G, Reichek N, Lenkinski R, McCully KK, Mullen JL, Wilson JR (1992) Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation 85:1364–1373

    PubMed  CAS  Google Scholar 

  • Marques MJ, Conchello JA, Lichtman JW (2000) From plaque to pretzel: Fold formation and acetylcholine receptor loss at the developing neuromuscular junction. J Neurosci 20:3663–3675

    PubMed  CAS  Google Scholar 

  • Marques MJ, Mendes ZTR, Minatel E, Neto HS (2005) Acetylcholine receptors and nerve terminal distribution at the neuromuscular junction of long-term regenerated muscle fibers. J Neurocytol 34:387–396

    Article  PubMed  CAS  Google Scholar 

  • Martyn JA, Fagerlund MJ, Eriksson II (2009) Basic principles of neuromuscular transmission. Anaesthesia 64:1–9

    Article  PubMed  CAS  Google Scholar 

  • McMurray JJ, Stewart S (2000) Epidemiology, etiology, and prognosis of heart failure. Heart 83:596–602

    Article  PubMed  CAS  Google Scholar 

  • Niks EH, Kuks JBM, Wokke JHJ, Veldman H, Bakker E, Verschuuren JJGM, Plomp JJ (2010) Pre- and postsynaptic neuromuscular junction abnormalities in musk myasthenia. Muscle Nerve 42:283–288

    Article  PubMed  Google Scholar 

  • Piepoli MF, Guazzi M, Boriani G, Cicoirae M, Corra U, Dalla Libera L, Donato ME, Passinog MC, Vescovo G, Vigoritok C, Villani GQ, Agostoni P (2010) Exercise intolerance in chronic heart failure: mechanisms and therapies. Part I. Eur J Cardiovasc Prev Rehabil 17:637–642

    Article  PubMed  Google Scholar 

  • Reindel J, Ganey PE, Wagner JG, Slocombe RF, Roth RA (1990) Development of morphologic, hemodynamic, and biochemical changes in lungs of rats given monocrotaline pyrrole. Toxicol Appl Pharmacol 106:179–200

    Article  PubMed  CAS  Google Scholar 

  • Roztler S, Brenner HR (1990) Metabolic Stabilization of acetylcholine receptors in vertebrate neuromuscular junction by muscle activity. J Cell Biol 111:655–661

    Article  Google Scholar 

  • Schuetze SM, Role LW (1987) Development regulation of nicotinic acetylcholine receptors. Annu Rev Neurosci 10:403–457

    Article  PubMed  CAS  Google Scholar 

  • Schwarz H, Giese G, Müller H, Koenen M, Witzemann V (2000) Different functions of fetal and adult AChR subtypes for the formation and maintenance of neuromuscular synapses revealed in epsilon-subunit-deficient mice. Eur J Neurosci 12:3107–3116

    Article  PubMed  CAS  Google Scholar 

  • Sullivan MJ, Green HJ, Cobb FR (1990) Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation 81:518–527

    Article  PubMed  CAS  Google Scholar 

  • Tsujihata M, Ito H, Satoh A, Yoshimura T, Motomura M, Nakamura T (2001) Semiquantitative measurement of acetylcholine receptor at the motor end-plate in myasthenia gravis. Intern Med 40:376–381

    Article  PubMed  CAS  Google Scholar 

  • Vescovo G, Jones SM, Harding SE, Poole-Wilson PA (1989) Isoproterenol sensitivity of isolated cardiac myocytes from rats with monocrotaline-induced right-sided hypertrophy and heart failure. J Mol Cell Cardiol 21:1047–1061

    Article  PubMed  CAS  Google Scholar 

  • Vescovo G, Ceconi C, Bernocchi P, Ferrari R, Carraro U, Ambrosio GB, Libera LD (1998) Skeletal muscle myosin heavy chain expression in rats with monocrotaline-induced cardiac hypertrophy and failure. Relation to blood flow and degree of muscle atrophy. Cardiovasc Res 39:233–241

    Article  PubMed  CAS  Google Scholar 

  • Willmann R, Fuhrer C (2002) Neuromuscular synaptogenesis: clustering of acetylcholine receptors revisited. Cell Mol Life Sci 59:1296–1316

    Article  PubMed  CAS  Google Scholar 

  • Witzemann V, Brenner HR, Sakmann B (1991) Neural factors regulate AChR subunit mRNAs at rat neuromuscular synapses. J Cell Biol 114:125–141

    Article  PubMed  CAS  Google Scholar 

  • Wood SJ, Slater CR (1997) The contribution of postsynaptic folds to the safety factor for neuromuscular transmission in rat fast and slow-twitch muscles. J Physiol 500:165–176

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), FUNDUNESP, process number 00751/07DFP, and 557-01-DCP and UNESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maeli Dal-Pai-Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza, P.A.T., Matheus, S.M.M., Castan, E.P. et al. Morphological aspects of neuromuscular junctions and gene expression of nicotinic acetylcholine receptors (nAChRs) in skeletal muscle of rats with heart failure. J Mol Hist 42, 557–565 (2011). https://doi.org/10.1007/s10735-011-9354-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-011-9354-2

Keywords

Navigation