Journal of Molecular Histology

, Volume 41, Issue 1, pp 81–87 | Cite as

Heart failure increases atrogin-1 and MuRF1 gene expression in skeletal muscle with fiber type-specific atrophy

  • Robson Francisco Carvalho
  • Eduardo Paulino Castan
  • Cesar Augusto Coelho
  • Francis Silva Lopes
  • Fernanda Losi Alves Almeida
  • Aline Michelin
  • Rodrigo Wagner Alves de Souza
  • João Pessoa AraújoJr.
  • Antonio Carlos Cicogna
  • Maeli Dal Pai-Silva
Brief Communication

Abstract

Heart failure (HF) is characterized by a reduced tolerance to exercise due to early fatigue and dyspnea; this may be due in part to skeletal muscle myopathy with a shift from slow to fast fibers and loss of muscle mass. Muscle wasting does not occur similarly in all types of muscle fiber, thus we tested the hypothesis that HF induces skeletal muscle atrophy in a fiber type-specific manner altering the expression of atrogin-1 and MuRF1 in a fast muscle of rats with monocrotaline-induced heart failure. We studied extensor digitorum longus (EDL) muscle from both HF and control Wistar rats. Atrogin-1 and MuRF1 mRNA content were determined using Real-Time RT-qPCR while muscle fiber cross-sectional area (CSA) from sections stained histochemically for myofibrillar ATPase were used as an index of type-specific fiber atrophy. The measurement of gene expression by RT-qPCR revealed that EDL muscle mRNA expression of MuRF1 and atrogin-1 was significantly increased in the HF group. Muscle fiber type IIB CSA decreased in the HF group compared to the CT group; there was no significant difference in muscle fiber types I and IIA/D CSA between the HF and CT groups. In conclusion, we showed that HF induces fiber type IIB specific atrophy, up-regulating atrogin-1 and MuRF1 mRNA expression in EDL muscle of monocrotaline treated rats.

Keywords

Atrogin-1 MuRF1 Fiber Type-Specific Atrophy 

References

  1. Acharyya S, Ladner KJ, Nelsen LL, Damrauer J, Reiser PJ, Swoap S, Guttridge DC (2004) Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J Clin Invest 114:370–378PubMedGoogle Scholar
  2. Baracos VE, DeVivo C, Hoyle DH, Goldberg AL (1995) Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma. Am J Physiol 268:E996–E1006PubMedGoogle Scholar
  3. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708CrossRefPubMedGoogle Scholar
  4. Cao PR, Kim HJ, Lecker SH (2005) Ubiquitin-protein ligases in muscle wasting. Int J Biochem Cell Biol 37:2088–2097CrossRefPubMedGoogle Scholar
  5. Clavel S, Coldefy AS, Kurkdjian E, Salles J, Margaritis I, Derijard B (2006) Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat Tibialis Anterior muscle. Mech Ageing Dev 127:794–801CrossRefPubMedGoogle Scholar
  6. Dahlmann B, Rutschmann M, Reinauer H (1986) Effect of starvation or treatment with corticosterone on the amount of easily releasable myofilaments in rat skeletal muscles. Biochem J 234:659–664PubMedGoogle Scholar
  7. Dalla Libera L, Sabbadini R, Renken C, Ravara B, Sandri M, Betto R, Angelini A, Vescovo G (2001) Apoptosis in the skeletal muscle of rats with heart failure is associated with increased serum levels of TNF-alpha and sphingosine. J Mol Cell Cardiol 33:1871–1878CrossRefPubMedGoogle Scholar
  8. De Sousa E, Veksler V, Bigard X, Mateo P, Ventura-Clapier R (2000) Heart failure affects mitochondrial but not myofibrillar intrinsic properties of skeletal muscle. Circulation 102:1847–1853PubMedGoogle Scholar
  9. Dehoux MJ, van Beneden RP, Fernandez-Celemin L, Lause PL, Thissen JP (2003) Induction of MafBx and Murf ubiquitin ligase mRNAs in rat skeletal muscle after LPS injection. FEBS Lett 544:214–217CrossRefPubMedGoogle Scholar
  10. Drexler H, Riede U, Munzel T, Konig H, Funke E, Just H (1992) Alterations of skeletal muscle in chronic heart failure. Circulation 85:1751–1759PubMedGoogle Scholar
  11. Edstrom E, Altun M, Hagglund M, Ulfhake B (2006) Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle. J Gerontol A Biol Sci Med Sci 61:663–674PubMedGoogle Scholar
  12. Goldberg AL, Goodman HM (1969) Effects od disuse and denervation on amino acid transport by skeletal muscle. Am J Physiol 216:1116–1119PubMedGoogle Scholar
  13. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 98:14440–14445CrossRefPubMedGoogle Scholar
  14. Herbison GJ, Jaweed MM, Ditunno JF (1979) Muscle atrophy in rats following denervation, casting, inflammation, and tenotomy. Arch Phys Med Rehabil 60:401–404PubMedGoogle Scholar
  15. Jagoe RT, Goldberg AL (2001) What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care 4:183–190CrossRefPubMedGoogle Scholar
  16. Kimura N, Kumamoto T, Oniki T, Nomura M, Nakamura K, Abe Y, Hazama Y, Ueyama H (2009) Role of ubiquitin-proteasome proteolysis in muscle fiber destruction in experimental chloroquine-induced myopathy. Muscle Nerve 39:521–528CrossRefPubMedGoogle Scholar
  17. Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, Lin HC, Yancopoulos GD, Glass DJ (2005) Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3 K/Akt/mTOR) pathway. J Biol Chem 280:2737–2744CrossRefPubMedGoogle Scholar
  18. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. Faseb J 18:39–51CrossRefPubMedGoogle Scholar
  19. Leineweber K, Brandt K, Wludyka B, Beilfuss A, Ponicke K, Heinroth-Hoffmann I, Brodde OE (2002) Ventricular hypertrophy plus neurohumoral activation is necessary to alter the cardiac beta-adrenoceptor system in experimental heart failure. Circ Res 91:1056–1062CrossRefPubMedGoogle Scholar
  20. Li JB, Goldberg AL (1976) Effects of food deprivation on protein synthesis and degradation in rat skeletal muscles. Am J Physiol 231:441–448PubMedGoogle Scholar
  21. Li P, Waters RE, Redfern SI, Zhang M, Mao L, Annex BH, Yan Z (2007) Oxidative phenotype protects myofibers from pathological insults induced by chronic heart failure in mice. Am J Pathol 170:599–608CrossRefPubMedGoogle Scholar
  22. Li H, Malhotra S, Kumar A (2008) Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med 86:1113–1126CrossRefPubMedGoogle Scholar
  23. Lipkin DP, Jones DA, Round JM, Poole-Wilson PA (1988) Abnormalities of skeletal muscle in patients with chronic heart failure. Int J Cardiol 18:187–195CrossRefPubMedGoogle Scholar
  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  25. Mancini DM, Walter G, Reichek N, Lenkinski R, McCully KK, Mullen JL, Wilson JR (1992) Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation 85:1364–1373PubMedGoogle Scholar
  26. Price SR (2003) Increased transcription of ubiquitin-proteasome system components: molecular responses associated with muscle atrophy. Int J Biochem Cell Biol 35:617–628CrossRefPubMedGoogle Scholar
  27. Razeghi P, Baskin KK, Sharma S, Young ME, Stepkowski S, Essop MF, Taegtmeyer H (2006) Atrophy, hypertrophy, and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart. Biochem Biophys Res Commun 342:361–364CrossRefPubMedGoogle Scholar
  28. Reindel JF, Ganey PE, Wagner JG, Slocombe RF, Roth RA (1990) Development of morphologic, hemodynamic, and biochemical changes in lungs of rats given monocrotaline pyrrole. Toxicol Appl Pharmacol 106:179–200CrossRefPubMedGoogle Scholar
  29. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412CrossRefPubMedGoogle Scholar
  30. Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA 103:16260–16265CrossRefPubMedGoogle Scholar
  31. Simonini A, Massie BM, Long CS, Qi M, Samarel AM (1996) Alterations in skeletal muscle gene expression in the rat with chronic congestive heart failure. J Mol Cell Cardiol 28:1683–1691CrossRefPubMedGoogle Scholar
  32. Spangenburg EE, Talmadge RJ, Musch TI, Pfeifer PC, McAllister RM, Williams JH (2002) Changes in skeletal muscle myosin heavy chain isoform content during congestive heart failure. Eur J Appl Physiol 87:182–186CrossRefPubMedGoogle Scholar
  33. Staron RS, Kraemer WJ, Hikida RS, Fry AC, Murray JD, Campos GE (1999) Fiber type composition of four hindlimb muscles of adult Fisher 344 rats. Histochem Cell Biol 111:117–123CrossRefPubMedGoogle Scholar
  34. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3 K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395–403CrossRefPubMedGoogle Scholar
  35. Sullivan MJ, Green HJ, Cobb FR (1990) Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation 81:518–527PubMedGoogle Scholar
  36. Tiao G, Lieberman M, Fischer JE, Hasselgren PO (1997) Intracellular regulation of protein degradation during sepsis is different in fast- and slow-twitch muscle. Am J Physiol 272:R849–R856PubMedGoogle Scholar
  37. van Albada ME, Bartelds B, Wijnberg H, Mohaupt S, Dickinson MG, Schoemaker RG, Kooi KA, Gerbens F, Berger RM (2010) Gene expression profile in flow-associated pulmonary arterial hypertension with neointimal lesions. Am J Physiol Lung Cell Mol Physiol 298(4):L483–L491Google Scholar
  38. van Hees HW, Li YP, Ottenheijm CA, Jin B, Pigmans CJ, Linkels M, Dekhuijzen PN, Heunks LM (2008) Proteasome inhibition improves diaphragm function in congestive heart failure rats. Am J Physiol Lung Cell Mol Physiol 294:L1260–L1268CrossRefPubMedGoogle Scholar
  39. Vescovo G, Harding SE, Jones M, Dalla Libera L, Pessina AC, Poole-Wilson PA (1989) Contractile abnormalities of single right ventricular myocytes isolated from rats with right ventricular hypertrophy. J Mol Cell Cardiol 21(Suppl 5):103–111CrossRefPubMedGoogle Scholar
  40. Vescovo G, Ceconi C, Bernocchi P, Ferrari R, Carraro U, Ambrosio GB, Libera LD (1998) Skeletal muscle myosin heavy chain expression in rats with monocrotaline-induced cardiac hypertrophy and failure. Relation to blood flow and degree of muscle atrophy. Cardiovasc Res 39:233–241CrossRefPubMedGoogle Scholar
  41. Wray CJ, Mammen JM, Hershko DD, Hasselgren PO (2003) Sepsis upregulates the gene expression of multiple ubiquitin ligases in skeletal muscle. Int J Biochem Cell Biol 35:698–705CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Robson Francisco Carvalho
    • 1
  • Eduardo Paulino Castan
    • 1
  • Cesar Augusto Coelho
    • 1
  • Francis Silva Lopes
    • 2
  • Fernanda Losi Alves Almeida
    • 1
  • Aline Michelin
    • 1
  • Rodrigo Wagner Alves de Souza
    • 1
  • João Pessoa AraújoJr.
    • 3
  • Antonio Carlos Cicogna
    • 4
  • Maeli Dal Pai-Silva
    • 1
  1. 1.Department of Morphology, Institute of BiosciencesUNESP São Paulo State UniversityBotucatuBrazil
  2. 2.Department of PhysiotherapyUNOESTEPresidente PrudenteBrazil
  3. 3.Department of Microbiology and Immunology, Institute of BiosciencesUNESP São Paulo State UniversityBotucatuBrazil
  4. 4.Department of Internal Medicine, School of MedicineUNESP São Paulo State UniversityBotucatuBrazil

Personalised recommendations