Skip to main content

Advertisement

Log in

Heart failure increases atrogin-1 and MuRF1 gene expression in skeletal muscle with fiber type-specific atrophy

  • Brief Communication
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Heart failure (HF) is characterized by a reduced tolerance to exercise due to early fatigue and dyspnea; this may be due in part to skeletal muscle myopathy with a shift from slow to fast fibers and loss of muscle mass. Muscle wasting does not occur similarly in all types of muscle fiber, thus we tested the hypothesis that HF induces skeletal muscle atrophy in a fiber type-specific manner altering the expression of atrogin-1 and MuRF1 in a fast muscle of rats with monocrotaline-induced heart failure. We studied extensor digitorum longus (EDL) muscle from both HF and control Wistar rats. Atrogin-1 and MuRF1 mRNA content were determined using Real-Time RT-qPCR while muscle fiber cross-sectional area (CSA) from sections stained histochemically for myofibrillar ATPase were used as an index of type-specific fiber atrophy. The measurement of gene expression by RT-qPCR revealed that EDL muscle mRNA expression of MuRF1 and atrogin-1 was significantly increased in the HF group. Muscle fiber type IIB CSA decreased in the HF group compared to the CT group; there was no significant difference in muscle fiber types I and IIA/D CSA between the HF and CT groups. In conclusion, we showed that HF induces fiber type IIB specific atrophy, up-regulating atrogin-1 and MuRF1 mRNA expression in EDL muscle of monocrotaline treated rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Acharyya S, Ladner KJ, Nelsen LL, Damrauer J, Reiser PJ, Swoap S, Guttridge DC (2004) Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J Clin Invest 114:370–378

    CAS  PubMed  Google Scholar 

  • Baracos VE, DeVivo C, Hoyle DH, Goldberg AL (1995) Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma. Am J Physiol 268:E996–E1006

    CAS  PubMed  Google Scholar 

  • Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    Article  CAS  PubMed  Google Scholar 

  • Cao PR, Kim HJ, Lecker SH (2005) Ubiquitin-protein ligases in muscle wasting. Int J Biochem Cell Biol 37:2088–2097

    Article  CAS  PubMed  Google Scholar 

  • Clavel S, Coldefy AS, Kurkdjian E, Salles J, Margaritis I, Derijard B (2006) Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat Tibialis Anterior muscle. Mech Ageing Dev 127:794–801

    Article  CAS  PubMed  Google Scholar 

  • Dahlmann B, Rutschmann M, Reinauer H (1986) Effect of starvation or treatment with corticosterone on the amount of easily releasable myofilaments in rat skeletal muscles. Biochem J 234:659–664

    CAS  PubMed  Google Scholar 

  • Dalla Libera L, Sabbadini R, Renken C, Ravara B, Sandri M, Betto R, Angelini A, Vescovo G (2001) Apoptosis in the skeletal muscle of rats with heart failure is associated with increased serum levels of TNF-alpha and sphingosine. J Mol Cell Cardiol 33:1871–1878

    Article  CAS  PubMed  Google Scholar 

  • De Sousa E, Veksler V, Bigard X, Mateo P, Ventura-Clapier R (2000) Heart failure affects mitochondrial but not myofibrillar intrinsic properties of skeletal muscle. Circulation 102:1847–1853

    PubMed  Google Scholar 

  • Dehoux MJ, van Beneden RP, Fernandez-Celemin L, Lause PL, Thissen JP (2003) Induction of MafBx and Murf ubiquitin ligase mRNAs in rat skeletal muscle after LPS injection. FEBS Lett 544:214–217

    Article  CAS  PubMed  Google Scholar 

  • Drexler H, Riede U, Munzel T, Konig H, Funke E, Just H (1992) Alterations of skeletal muscle in chronic heart failure. Circulation 85:1751–1759

    CAS  PubMed  Google Scholar 

  • Edstrom E, Altun M, Hagglund M, Ulfhake B (2006) Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle. J Gerontol A Biol Sci Med Sci 61:663–674

    PubMed  Google Scholar 

  • Goldberg AL, Goodman HM (1969) Effects od disuse and denervation on amino acid transport by skeletal muscle. Am J Physiol 216:1116–1119

    CAS  PubMed  Google Scholar 

  • Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 98:14440–14445

    Article  CAS  PubMed  Google Scholar 

  • Herbison GJ, Jaweed MM, Ditunno JF (1979) Muscle atrophy in rats following denervation, casting, inflammation, and tenotomy. Arch Phys Med Rehabil 60:401–404

    CAS  PubMed  Google Scholar 

  • Jagoe RT, Goldberg AL (2001) What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care 4:183–190

    Article  CAS  PubMed  Google Scholar 

  • Kimura N, Kumamoto T, Oniki T, Nomura M, Nakamura K, Abe Y, Hazama Y, Ueyama H (2009) Role of ubiquitin-proteasome proteolysis in muscle fiber destruction in experimental chloroquine-induced myopathy. Muscle Nerve 39:521–528

    Article  CAS  PubMed  Google Scholar 

  • Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, Lin HC, Yancopoulos GD, Glass DJ (2005) Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3 K/Akt/mTOR) pathway. J Biol Chem 280:2737–2744

    Article  CAS  PubMed  Google Scholar 

  • Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. Faseb J 18:39–51

    Article  CAS  PubMed  Google Scholar 

  • Leineweber K, Brandt K, Wludyka B, Beilfuss A, Ponicke K, Heinroth-Hoffmann I, Brodde OE (2002) Ventricular hypertrophy plus neurohumoral activation is necessary to alter the cardiac beta-adrenoceptor system in experimental heart failure. Circ Res 91:1056–1062

    Article  CAS  PubMed  Google Scholar 

  • Li JB, Goldberg AL (1976) Effects of food deprivation on protein synthesis and degradation in rat skeletal muscles. Am J Physiol 231:441–448

    CAS  PubMed  Google Scholar 

  • Li P, Waters RE, Redfern SI, Zhang M, Mao L, Annex BH, Yan Z (2007) Oxidative phenotype protects myofibers from pathological insults induced by chronic heart failure in mice. Am J Pathol 170:599–608

    Article  CAS  PubMed  Google Scholar 

  • Li H, Malhotra S, Kumar A (2008) Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med 86:1113–1126

    Article  CAS  PubMed  Google Scholar 

  • Lipkin DP, Jones DA, Round JM, Poole-Wilson PA (1988) Abnormalities of skeletal muscle in patients with chronic heart failure. Int J Cardiol 18:187–195

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mancini DM, Walter G, Reichek N, Lenkinski R, McCully KK, Mullen JL, Wilson JR (1992) Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation 85:1364–1373

    CAS  PubMed  Google Scholar 

  • Price SR (2003) Increased transcription of ubiquitin-proteasome system components: molecular responses associated with muscle atrophy. Int J Biochem Cell Biol 35:617–628

    Article  CAS  PubMed  Google Scholar 

  • Razeghi P, Baskin KK, Sharma S, Young ME, Stepkowski S, Essop MF, Taegtmeyer H (2006) Atrophy, hypertrophy, and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart. Biochem Biophys Res Commun 342:361–364

    Article  CAS  PubMed  Google Scholar 

  • Reindel JF, Ganey PE, Wagner JG, Slocombe RF, Roth RA (1990) Development of morphologic, hemodynamic, and biochemical changes in lungs of rats given monocrotaline pyrrole. Toxicol Appl Pharmacol 106:179–200

    Article  CAS  PubMed  Google Scholar 

  • Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412

    Article  CAS  PubMed  Google Scholar 

  • Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA 103:16260–16265

    Article  CAS  PubMed  Google Scholar 

  • Simonini A, Massie BM, Long CS, Qi M, Samarel AM (1996) Alterations in skeletal muscle gene expression in the rat with chronic congestive heart failure. J Mol Cell Cardiol 28:1683–1691

    Article  CAS  PubMed  Google Scholar 

  • Spangenburg EE, Talmadge RJ, Musch TI, Pfeifer PC, McAllister RM, Williams JH (2002) Changes in skeletal muscle myosin heavy chain isoform content during congestive heart failure. Eur J Appl Physiol 87:182–186

    Article  CAS  PubMed  Google Scholar 

  • Staron RS, Kraemer WJ, Hikida RS, Fry AC, Murray JD, Campos GE (1999) Fiber type composition of four hindlimb muscles of adult Fisher 344 rats. Histochem Cell Biol 111:117–123

    Article  CAS  PubMed  Google Scholar 

  • Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3 K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395–403

    Article  CAS  PubMed  Google Scholar 

  • Sullivan MJ, Green HJ, Cobb FR (1990) Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation 81:518–527

    CAS  PubMed  Google Scholar 

  • Tiao G, Lieberman M, Fischer JE, Hasselgren PO (1997) Intracellular regulation of protein degradation during sepsis is different in fast- and slow-twitch muscle. Am J Physiol 272:R849–R856

    CAS  PubMed  Google Scholar 

  • van Albada ME, Bartelds B, Wijnberg H, Mohaupt S, Dickinson MG, Schoemaker RG, Kooi KA, Gerbens F, Berger RM (2010) Gene expression profile in flow-associated pulmonary arterial hypertension with neointimal lesions. Am J Physiol Lung Cell Mol Physiol 298(4):L483–L491

    Google Scholar 

  • van Hees HW, Li YP, Ottenheijm CA, Jin B, Pigmans CJ, Linkels M, Dekhuijzen PN, Heunks LM (2008) Proteasome inhibition improves diaphragm function in congestive heart failure rats. Am J Physiol Lung Cell Mol Physiol 294:L1260–L1268

    Article  PubMed  Google Scholar 

  • Vescovo G, Harding SE, Jones M, Dalla Libera L, Pessina AC, Poole-Wilson PA (1989) Contractile abnormalities of single right ventricular myocytes isolated from rats with right ventricular hypertrophy. J Mol Cell Cardiol 21(Suppl 5):103–111

    Article  PubMed  Google Scholar 

  • Vescovo G, Ceconi C, Bernocchi P, Ferrari R, Carraro U, Ambrosio GB, Libera LD (1998) Skeletal muscle myosin heavy chain expression in rats with monocrotaline-induced cardiac hypertrophy and failure. Relation to blood flow and degree of muscle atrophy. Cardiovasc Res 39:233–241

    Article  CAS  PubMed  Google Scholar 

  • Wray CJ, Mammen JM, Hershko DD, Hasselgren PO (2003) Sepsis upregulates the gene expression of multiple ubiquitin ligases in skeletal muscle. Int J Biochem Cell Biol 35:698–705

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Fundação de Amparo to Pesquisa do Estado de São Paulo (FAPESP, Process no 2006/54419-9), and CNPq (Process no 410942/2003-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robson Francisco Carvalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, R.F., Castan, E.P., Coelho, C.A. et al. Heart failure increases atrogin-1 and MuRF1 gene expression in skeletal muscle with fiber type-specific atrophy. J Mol Hist 41, 81–87 (2010). https://doi.org/10.1007/s10735-010-9262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-010-9262-x

Keywords

Navigation