Skip to main content

Advertisement

Log in

Specific subcellular targeting of PKCα and PKCε in normal and tumoral lactotroph cells by PMA-mitogenic stimulus

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

The variations of the intracellular localization of the individual protein kinase C (PKC) isoforms are related with their different biological functions. In this study, we have investigated the precise intracellular translocation of endogenous PKCα and PKCε in PMA-stimulated normal and tumoral lactotroph cells by using confocal and immunogold electron microscopy, which was correlated with the rate of cell proliferation of both pituitary cell phenotypes. The present results showed that the short phorbol ester incubation stimulated the proliferation of normal and tumoral lactotroph cells, as determined by the measurement of the BrdU-labelling index. The translocation of PKCα to plasma and nuclear membranes induced by PMA was more marked than that observed for PKCε in normal and tumoral lactotroph cells. Our results showed that PKCs translocation to the plasma and nuclear membranes varied from isozyme to isozyme emphasizing that PKCα could be related with the mitogenic stimulus exerted by phorbol ester. These data support the notion that specific PKC isozymes may exert spatially defined effects by virtue of their directed translocation to distinct intracellular sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvaro V, Lévy L, Dubray C, Roche A, Peillon F, Quérat B, Joubert D (1993) Invasive human pituitary tumors express a point-mutated alpha-protein kinase-C. J Clin Endocrinol Metab 77:1125–1129

    Article  CAS  PubMed  Google Scholar 

  • Basu A, Sivaprasad U (2007) Protein kinase Cepsilon makes the life and death decision. Cell Signal 19:1633–1642

    Article  CAS  PubMed  Google Scholar 

  • Collazos A, Diouf B, Guérineau NC, Quittau-Prévostel C, Peter M, Coudane F, Hollande F, Joubert D (2006) A spatiotemporally coordinated cascade of protein kinase C activation controls isoform-selective translocation. Mol Cell Biol 26:2247–2261

    Article  CAS  PubMed  Google Scholar 

  • Csukai M, Chen CH, De Matteis MA, Mochly-Rosen D (1997) The coatomer protein beta’-COP, a selective binding protein (RACK) for protein kinase Cepsilon. J Biol Chem 272:29200–29206

    Article  CAS  PubMed  Google Scholar 

  • De Paul A, Pons P, Aoki A, Torres A (1997) Different behavior of lactotroph cell subpopulations in response to angiotensin II and thyrotrophin-releasing hormone. Cell Mol Neurobiol 17:245–258

    Article  PubMed  Google Scholar 

  • Denys A, Hichami A, Maume B, Khan NA (2001) Docosahexaenoic acid modulates phorbol ester-induced activation of extracellular signal-regulated kinases 1 and 2 in NIH/3T3 cells. Lipids 36:813–818

    Article  CAS  PubMed  Google Scholar 

  • Detjen KM, Brembeck FH, Welzel M, Kaiser A, Haller H, Wiedenmann B, Rosewicz S (2000) Activation of protein kinase C alpha inhibits growth of pancreatic cancer cells via p21(cip)-mediated G(1) arrest. J Cell Sci 113:3025–3035

    CAS  PubMed  Google Scholar 

  • Diouf B, Collazos A, Labesse G, Macari F, Choquet A, Clair P, Gauthier-Rouvière C, Guérineau NC, Jay P, Hollande F, Joubert D (2009) A 20-amino acid module of protein kinase C{epsilon} involved in translocation and selective targeting at cell–cell contacts. J Biol Chem 284:18808–18815

    Article  CAS  PubMed  Google Scholar 

  • Dorn GW, Mochly-Rosen D (2002) Intracellular transport mechanisms of signal transducers. Annu Rev Physiol 64:407–429

    Article  CAS  PubMed  Google Scholar 

  • Garczarczyk D, Toton E, Biedermann V, Rosivatz E, Rechfeld F, Rybczynska M, Hofmann J (2009) Signal transduction of constitutively active protein kinase C epsilon. Cell Signal 21:745–752

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Gracía JC, Bellido C, Aguilar R, Sanchez-Criado JE (2006) Protein kinase C cross-talk with gonadotrope progesterone receptor is involved in GnRH-induced LH secretion. J Physiol Biochem 62:35–42

    Article  PubMed  Google Scholar 

  • Gutiérrez S, Petiti JP, De Paul AL, Mukdsi JH, Aoki A, Torres AI, Orgnero EM (2005) Antagonic effects of oestradiol in interaction with IGF-1 on proliferation of lactotroph cells in vitro. Histochem Cell Biol 124:291–301

    Article  PubMed  Google Scholar 

  • Kazanietz MG (2002) Novel “nonkinase” phorbol ester receptors: the C1 domain connection. Mol Pharmacol 61:759–767

    Article  CAS  PubMed  Google Scholar 

  • Kazi JU, Soh JW (2007) Isoform-specific translocation of PKC isoforms in NIH3T3 cells by TPA. Biochem Biophys Res Commun 364:231–237

    Article  CAS  PubMed  Google Scholar 

  • Kenessey A, Sullivan EA, Ojamaa K (2006) Nuclear localization of protein kinase C-alpha induces thyroid hormone receptor-alpha1 expression in the cardiomyocyte. Am J Physiol Heart Circ Physiol 290:H381–H389

    Article  CAS  PubMed  Google Scholar 

  • Kuriyama M, Taniguchi T, Shirai Y, Sasaki A, Yoshimura A, Saito N (2004) Activation and translocation of PKCdelta is necessary for VEGF-induced ERK activation through KDR in HEK293T cells. Biochem Biophys Res Commun 325:843–851

    Article  CAS  PubMed  Google Scholar 

  • Lanni C, Mazzucchelli M, Porrello E, Govoni S, Racchi M (2004) Differential involvement of protein kinase C alpha and epsilon in the regulated secretion of soluble amyloid precursor protein. Eur J Biochem 271:3068–3075

    Article  CAS  PubMed  Google Scholar 

  • Lehel C, Olah Z, Jakab G, Anderson WB (1995) Protein kinase C epsilon is localized to the Golgi via its zinc-finger domain and modulates Golgi function. Proc Natl Acad Sci USA 92:1406–1410

    Article  CAS  PubMed  Google Scholar 

  • Lin YF, Lee HM, Leu SJ, Tsai YH (2007) The essentiality of PKCalpha and PKCbeta(I) translocation for CD14(+) monocyte differentiation towards macrophages and dendritic cells, respectively. J Cell Biochem 102:429–441

    Article  CAS  PubMed  Google Scholar 

  • MacEwan DJ, Johnson MS, Mitchell R (1999) Protein kinase C isoforms in pituitary cells displaying differential sensitivity to phorbol ester. Mol Cell Biochem 202:85–90

    Article  CAS  PubMed  Google Scholar 

  • Mackay HJ, Twelves CJ (2007) Targeting the protein kinase C family: are we there yet? Nat Rev Cancer 7:554–562

    Article  CAS  PubMed  Google Scholar 

  • Maissel A, Marom M, Shtutman M, Shahaf G, Livneh E (2006) PKCeta is localized in the Golgi, ER and nuclear envelope and translocates to the nuclear envelope upon PMA activation and serum-starvation: C1b domain and the pseudosubstrate containing fragment target PKC eta to the Golgi and the nuclear envelope. Cell Signal 18:1127–1139

    Article  CAS  PubMed  Google Scholar 

  • Majumder PK, Pandey P, Sun X, Cheng K, Datta R, Saxena S, Kharbanda S, Kufe D (2000) Mitochondrial translocation of protein kinase C delta in phorbol ester-induced cytochrome c release and apoptosis. J Biol Chem 275:21793–21796

    Article  CAS  PubMed  Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–698

    Article  CAS  PubMed  Google Scholar 

  • Ohno S, Nishizuka Y (2002) Protein kinase C isotypes and their specific functions: prologue. J Biochem 132:509–511

    CAS  PubMed  Google Scholar 

  • Oomizu S, Takeuchi S, Takahashi S (1998) Stimulatory effect of insulin-like growth factor I on proliferation of mouse pituitary cells in serum-free culture. J Endocrinol 157:53–62

    Article  CAS  PubMed  Google Scholar 

  • Petiti JP, De Paul AL, Gutiérrez S, Palmeri CM, Mukdsi JH, Torres AI (2008) Activation of PKC epsilon induces lactotroph proliferation through ERK1/2 in response to phorbol ester. Mol Cell Endocrinol 283:77–84

    Article  Google Scholar 

  • Quittau-Prévostel C, Delaunay N, Collazos A, Vallentin A, Joubert D (2004) Targeting of PKC alpha and epsilon in the pituitary: a highly regulated mechanism involving a GD(E) E motif of the V3 region. J Cell Sci 117:63–72

    Article  PubMed  Google Scholar 

  • Schechtman D, Mochly-Rosen D (2001) Adaptor proteins in protein kinase C-mediated signal transduction. Oncogene 20:6339–6347

    Article  CAS  PubMed  Google Scholar 

  • Schultz A, Ling M, Larsson C (2004) Identification of an amino acid residue in the protein kinase C C1b domain crucial for its localization to the Golgi network. J Biol Chem 279:31750–31760

    Article  CAS  PubMed  Google Scholar 

  • Sharma GD, Ottino P, Bazan NG, Bazan HE (2005) Epidermal and hepatocyte growth factors, but not keratinocyte growth factor, modulate protein kinase Calpha translocation to the plasma membrane through 15(S)-hydroxyeicosatetraenoic acid synthesis. J Biol Chem 280:7917–7924

    Article  CAS  PubMed  Google Scholar 

  • Sharma GD, Kakazu A, Bazan HE (2007) Protein kinase C alpha and epsilon differentially modulate hepatocyte growth factor-induced epithelial proliferation and migration. Exp Eye Res 85:289–297

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Cao CX, Shao RG, Pommier Y (1998) Lamin B phosphorylation by protein kinase calpha and proteolysis during apoptosis in human leukemia HL60 cells. J Biol Chem 273:8669–8674

    Article  CAS  PubMed  Google Scholar 

  • Shirai Y, Kashiwagi K, Yagi K, Sakai N, Saito N (1998a) Distinct effects of fatty acids on translocation of gamma- and epsilon-subspecies of protein kinase C. J Cell Biol 143:511–521

    Article  CAS  PubMed  Google Scholar 

  • Shirai Y, Sakai N, Saito N (1998b) Subspecies-specific targeting mechanism of protein kinase C. Jpn J Pharmacol 78:411–417

    Article  CAS  PubMed  Google Scholar 

  • Thompson LJ, Fields AP (1996) betaII protein kinase C is required for the G2/M phase transition of cell cycle. J Biol Chem 271:15045–15053

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K (2007) PKCdelta signaling: mechanisms of DNA damage response and apoptosis. Cell Signal 19:892–901

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Dong Q, Tan BJ, Lim WG, Zhou S, Duan W (2005) The PKCalpha-D294G mutant found in pituitary and thyroid tumors fails to transduce extracellular signals. Cancer Res 65:4520–4524

    Article  CAS  PubMed  Google Scholar 

  • Zini N, Martelli AM, Neri LM, Bavelloni A, Sabatelli P, Santi S, Maraldi NM (1995) Immunocytochemical evaluation of protein kinase C translocation to the inner nuclear matrix in 3T3 mouse fibroblasts after IGF-I treatment. Histochem Cell Biol 103:447–457

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Cecilia Sampedro, Mrs Mercedes Guevara and Mrs. Elena Pereyra for her excellent technical assistance and native speaker Dr. Paul Hobson for revising the English of the manuscript. This work was supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fondos para la Investigación Científica y Tecnológica (FONCyT) and the Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (SECyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Petiti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petiti, J.P., Gutiérrez, S., Mukdsi, J.H. et al. Specific subcellular targeting of PKCα and PKCε in normal and tumoral lactotroph cells by PMA-mitogenic stimulus. J Mol Hist 40, 417–425 (2009). https://doi.org/10.1007/s10735-010-9255-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-010-9255-9

Keywords

Navigation