Skip to main content

Advertisement

Log in

Influence of growth and transcriptional factors, and signaling molecules on early human pituitary development

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Development and differentiation of the human pituitary gland was investigated in 6 human conceptuses 6–9 postovulatory weeks old, using immunohistochemical technique to investigate appearance of different developmental factors, and immunofluorescent double staining technique with Ki-67 to investigate proliferation. In the developing human pituitary gland, different developmental factors appeared in temporally and spatially restricted patterns, thus contributing to formation of different parts of the gland: adenohypophysis, neurohypophysis and associated mesenchyme. Some growth factors were not primarily involved in cell proliferation (TGF-ß, BMP-2/4 and GATA), but in differentiation of pituitary cells: TGF-ß, BMP-2/4 and GATA probably contributed to differentiation of cells in the mesenchyme at earlier stages, while their influence on differentiation of specific cell types in the adenohypophysis increased with development. At later developmental stages, those factors also influenced the differentiation of cells in the neurohypophysis. FGF-8 and FGF-10 probably participated both in the growth and differentiation of pituitary cells: while FGF-8 could act during early developmental stages, FGF-10 participated in the same processes at later stages of pituitary development. Expression of EGF and VEGF indicated their involvement in proliferation of initially differentiated pituitary cells, and in subsequent differentiation of some cell types in the adenohypophysis and neurohypophysis. In the mesenchyme, expression of VEGF might be related to formation of new blood vessels as well. Precise patterns of appearance of growth and transcription factors, and signaling molecules in developing human pituitary gland seem to be important for cell proliferation, differentiation, and normal morphogenesis of the gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bazina M, Stefanovic V, Bozanic D, Saraga-Babic M (2007) Ultrastructural and immunohistochemical characteristics of developing human pituitary gland. Acta Histochem 109:366–376

    Article  PubMed  Google Scholar 

  • Borg SA, Kerry KE, Royds JA, Battersby RD, Jones TH (2005) Correlation of VEGF production with IL1 alpha and IL6 secretion by human pituitary adenoma cells. Eur J Endocrinol 152:293–300

    Article  CAS  PubMed  Google Scholar 

  • Burgess R, Lunyak V, Rosenfeld M (2002) Signaling and transcriptional control of pituitary development. Curr Opin Genet Dev 12:534–539

    Article  CAS  PubMed  Google Scholar 

  • Chaidarun SS, Eggo MC, Stewart PM, Sheppard MC (1994) Modulation of epidermal growth factor binding and receptor gene expression by hormones and growth factors in sheep pituitary cells. J Endocrinol 143:489–496

    Article  CAS  PubMed  Google Scholar 

  • Edlund T, Jessell TM (1999) Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell 96:211–224

    Article  CAS  PubMed  Google Scholar 

  • Ericson J, Norlin S, Jessell TM, Edlund T (1998) Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development 125:1005–1015

    CAS  PubMed  Google Scholar 

  • Fisher DA, Lakshmanan J (1990) Metabolism and effects of epidermal growth factor and related growth factors in mammals. Endocr Rev 11:418–442

    Article  CAS  PubMed  Google Scholar 

  • Giacomini D, Acuna M, Gerez J, Nagashima AC, Silberstein S, Paez-Pereda M, Labeur M, Theodoropoulou M, Renner U, Stalla GK, Arzt E (2007) Pituitary action of cytokines: focus on BMP-4 and gp130 family. Neuroendocrinology 85:94–100

    Article  CAS  PubMed  Google Scholar 

  • Herzog W, Sonntag C, von der Hardt S, Roehl HH, Varga ZM, Hammerschmidt M (2004) Fgf3 signaling from the ventral diencephalon is required for early specification and subsequent survival of the zebrafish adenohypophysis. Development 131:3681–3692

    Article  CAS  PubMed  Google Scholar 

  • Ingman WV, Robertson SA (2007) Transforming growth factor-beta1 null mutation causes infertility in male mice associated with testosterone deficiency and sexual dysfunction. Endocrinology 148:4032–4043

    Article  CAS  PubMed  Google Scholar 

  • Iwai-Liao Y, Kumabe S, Takeuchi M, Higashi Y (2000) Immunohistochemical localisation of epidermal growth factor, transforming growth factor alpha and EGF receptor during organogenesis of the murine hypophysis in vivo. Okajimas Folia Anat Jpn 76:291–301

    CAS  PubMed  Google Scholar 

  • Kretzschmar M, Doody J, Massague J (1997) Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 389:618–622

    Article  CAS  PubMed  Google Scholar 

  • Lawrence PA, Sanson B, Vincent JP (1996) Compartments, wingless and engrailed: patterning the ventral epidermis of Drosophila embryos. Development 122:4095–4103

    CAS  PubMed  Google Scholar 

  • Lloyd RV, Vidal S, Horvath E, Kovacs K, Scheithauer B (2003) Angiogenesis in normal and neoplastic pituitary tissues. Microsc Res Tech 60:244–250

    Article  CAS  PubMed  Google Scholar 

  • Ma GT, Roth ME, Groskopf JC, Tsai FY, Orkin SH, Grosveld F, Engel JD, Linzer DI (1997) GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo. Development 124:907–914

    CAS  PubMed  Google Scholar 

  • McLachlan RI, Robertson DM, de Kretser D, Burger HG (1987) Inhibin–a non-steroidal regulator of pituitary follicle stimulating hormone. Baillieres Clin Endocrinol Metab 1:89–112

    Article  CAS  PubMed  Google Scholar 

  • Mukdsi JH, De Paul AL, Gutierrez S, Roth FD, Aoki A, Torres AI (2005) Subcellular localisation of VEGF in different pituitary cells. Changes of its expression in oestrogen induced prolactinomas. J Mol Histol 36:447–454

    Article  CAS  PubMed  Google Scholar 

  • Mullis PE (2000) Transcription factors in pituitary gland development and their clinical impact on phenotype. Horm Res 54:107–119

    Article  CAS  PubMed  Google Scholar 

  • Nakakura T, Yoshida M, Dohra H, Suzuki M, Tanaka S (2006) Gene expression of vascular endothelial growth factor-A in the pituitary during formation of the vascular system in the hypothalamic-pituitary axis of the rat. Cell Tissue Res 324:87–95

    Article  CAS  PubMed  Google Scholar 

  • O’Rahilly R, Gardner E (1971) The timing and sequence of events in the development of the human nervous system during the embryonic period proper. Z Anat Entwicklungsgesch 134:1–12

    Article  PubMed  Google Scholar 

  • Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem 271:15292–15297

    Article  CAS  PubMed  Google Scholar 

  • Pastorcic M, De A, Boyadjieva N, Vale W, Sarkar DK (1995) Reduction in the expression and action of transforming growth factor beta 1 on lactotropes during estrogen-induced tumorigenesis in the anterior pituitary. Cancer Res 55:4892–4898

    CAS  PubMed  Google Scholar 

  • Roh M, Paterson AJ, Asa SL, Chin E, Kudlow JE (2001) Stage-sensitive blockade of pituitary somatomammotrope development by targeted expression of a dominant negative epidermal growth factor receptor in transgenic mice. Mol Endocrinol 15:600–613

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld MG, Briata P, Dasen J, Gleiberman AS, Kioussi C, Lin C, O’Connell SM, Ryan A, Szeto DP, Treier M (2000) Multistep signaling and transcriptional requirements for pituitary organogenesis in vivo. Recent Prog Horm Res 55:1–13 (discussion 13–14)

    CAS  PubMed  Google Scholar 

  • Saraga-Babic M, Bazina M, Vukojevic K, Bocina I, Stefanovic V (2008) Involvement of pro-apoptotic and anti-apoptotic factors in the early development of the human pituitary gland. Histol Histopathol 23:1259–1268

    CAS  PubMed  Google Scholar 

  • Savage JJ, Yaden BC, Kiratipranon P, Rhodes SJ (2003) Transcriptional control during mammalian anterior pituitary development. Gene 319:1–19

    Article  CAS  PubMed  Google Scholar 

  • Scully KM, Rosenfeld MG (2002) Pituitary development: regulatory codes in mammalian organogenesis. Science 295:2231–2235

    Article  CAS  PubMed  Google Scholar 

  • Sheng HZ, Zhadanov AB, Mosinger B Jr, Fujii T, Bertuzzi S, Grinberg A, Lee EJ, Huang SP, Mahon KA, Westphal H (1996) Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 272:1004–1007

    Article  CAS  PubMed  Google Scholar 

  • Treier M, O’Connell S, Gleiberman A, Price J, Szeto DP, Burgess R, Chuang PT, McMahon AP, Rosenfeld MG (2001) Hedgehog signaling is required for pituitary gland development. Development 128:377–386

    CAS  PubMed  Google Scholar 

  • Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, Alt FW, Orkin SH (1994) An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371:221–226

    Article  CAS  PubMed  Google Scholar 

  • Winnier G, Blessing M, Labosky PA, Hogan BL (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9:2105–2116

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y (1992) Function, molecular structure and gene expression regulation of transforming growth factor-beta (TGF-beta). Nippon Rinsho 50:1932–1938

    CAS  PubMed  Google Scholar 

  • Zhou Y, Lim KC, Onodera K, Takahashi S, Ohta J, Minegishi N, Tsai FY, Orkin SH, Yamamoto M, Engel JD (1998) Rescue of the embryonic lethal hematopoietic defect reveals a critical role for GATA-2 in urogenital development. EMBO J 17:6689–6700

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Gleiberman AS, Rosenfeld MG (2007) Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 87:933–963

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Mrs. Asja Miletić for her skilful technical assistance. This work is supported by the Ministry of Science, Education and Sports of the Republic of Croatia (grant no. 021-2160528-0507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarina Vukojevic.

Additional information

Mirna Bazina—deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazina, M., Vukojevic, K., Roje, D. et al. Influence of growth and transcriptional factors, and signaling molecules on early human pituitary development. J Mol Hist 40, 277–286 (2009). https://doi.org/10.1007/s10735-009-9239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-009-9239-9

Keywords

Navigation