Skip to main content
Log in

Expression of the ZNT (SLC30) family members in the epithelium of the mouse prostate during sexual maturation

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

A prostate contains ~10-fold higher zinc than other soft organs. The function of the prostate is to produce a zinc-enriched seminal fluid. To establish a protein expression profile for zinc transporters involved in zinc efflux and intracellular sequestration/storage in the mouse prostate during sexual maturation, ZNT expression were investigated by immunohistochemistry. Our study demonstrated that ZNT proteins were differentially expressed in the prostate during sexual maturation. ZNT1 was mainly detected on the lateral membrane of the epithelium. Other ZNTs examined resided intracellularly. Among differences were a staining of ZNT2/ZNT5 in the ER-rich area of the epithelium in the anterior lobe, a staining of ZNT2 along the lateral and apical membrane, a luminal border staining of ZNT4, a staining of ZNT5 in the Golgi area of the epithelium in the ventral lobe, a uniform expression of ZNT6 across the lobes and ages, and a staining of ZNT7 in all lobes across ages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrews GK, Wang H, Dey SK, Palmiter RD (2004) Mouse zinc transporter 1 gene provides an essential function during early embryonic development. Genesis 40:74–81. doi:10.1002/gene.20067

    Article  PubMed  CAS  Google Scholar 

  • Beck FW, Prasad AS, Butler CE, Sakr WA, Kucuk O, Sarkar FH (2004) Differential expression of hZnT-4 in human prostate tissues. Prostate 58:374–381. doi:10.1002/pros.10344

    Article  PubMed  CAS  Google Scholar 

  • Berquin IM, Min Y, Wu R, Wu H, Chen YQ (2005) Expression signature of the mouse prostate. J Biol Chem 280:36442–36451. doi:10.1074/jbc.M504945200

    Article  PubMed  CAS  Google Scholar 

  • Black RE (1997) Zinc for child health. Child Health Res Project Spec Rep 1:1–24

    Google Scholar 

  • Brandes D, Portela A (1960a) The fine structure of the epithelial cells of the mouse prostate: I. Coagulating gland epithelium. J Biophys Biochem Cytol 7:505–509

    PubMed  CAS  Google Scholar 

  • Brandes D, Portela A (1960b) The fine structure of the epithelial cells of the mouse prostate: II. Ventral lobe epithelium. J Biophys Biochem Cytol 7:511–514

    Article  PubMed  CAS  Google Scholar 

  • Canale D, Bartelloni M, Negroni A, Meschini P, Izzo PL, Bianchi B et al (1986) Zinc in human semen. Int J Androl 9:477–480

    PubMed  CAS  Google Scholar 

  • Chi ZH, Wang ZY, Wang X, Gao HL, Dahlstrom A, Huang L (2006) Zinc transporter 7 is located in the cis-Golgi apparatus of mouse choroid epithelial cells. Neuroreport 17:1807–1811. doi:10.1097/01.wnr.0000239968.06438.c5

    Article  PubMed  CAS  Google Scholar 

  • Chimienti F, Devergnas S, Favier A, Seve M (2004) Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53:2330–2337. doi:10.2337/diabetes.53.9.2330

    Article  PubMed  CAS  Google Scholar 

  • Chimienti F, Devergnas S, Pattou F, Schuit F, Garcia-Cuenca R, Vandewalle B et al (2006) In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 15:199–206

    Google Scholar 

  • Chowanadisai W, Lönnerdal B, Kelleher SL (2006) Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem 281:39699–39707. doi:10.1074/jbc.M605821200

    Article  PubMed  CAS  Google Scholar 

  • Costello LC, Franklin RB (1998) Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer. Prostate 35:285–296. doi:10.1002/(SICI)1097-0045(19980601)35:4<285::AID-PROS8>3.0.CO;2-F

    Article  PubMed  CAS  Google Scholar 

  • Costello L, Franklin RB (2000) The intermediary metabolism of the prostate: a key to understanding the pathogenesis and progression of prostate malignancy. Oncology 59:269–282. doi:10.1159/000012183

    Article  PubMed  CAS  Google Scholar 

  • Costello LC, Franklin RB (2006) The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer 5:17. doi:10.1186/1476-4598-5-17

    Article  PubMed  CAS  Google Scholar 

  • Cragg RA, Christie GR, Phillips SR, Russi RM, Küry S, Mathers JC et al (2002) A novel zinc-regulated human zinc transporter, hZTL1, is localized to the enterocyte apical membrane. J Biol Chem 277:22789–22797. doi:10.1074/jbc.M200577200

    Article  PubMed  CAS  Google Scholar 

  • Dufner-Geattie J, Langmade SJ, Wang F, Eide D, Andrews GK (2003a) Structure, function, and regulation of a subfamily of mouse zinc transporter genes. J Biol Chem 278:50142–50150. doi:10.1074/jbc.M304163200

    Article  CAS  Google Scholar 

  • Dufner-Geattie J, Wang F, Kuo Y-M, Gitschier J, Eide D, Andrews GK (2003b) The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J Biol Chem 278:33474–33481. doi:10.1074/jbc.M305000200

    Article  Google Scholar 

  • Eng BH, Guerinot ML, Eide D, Saier MH Jr (1998) Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. J Memebr Biol 166:1–7. doi:10.1007/s002329900442

    Article  CAS  Google Scholar 

  • Falcón-Pérez JM, Dell’Angelica EC (2007) Zinc transporter 2 (SLC30A2) can suppress the vesicular zinc defect of adaptor protein 3-depleted fibroblasts by promoting zinc accumulation in lysosomes. Exp Cell Res 313:1473–1483. doi:10.1016/j.yexcr.2007.02.006

    Article  PubMed  CAS  Google Scholar 

  • Franklin RB, Ma J, Zou J, Guan Z, Kukoyi BI, Feng P et al (2003) Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells. J Inorg Biochem 96:435–442. doi:10.1016/S0162-0134(03)00249-6

    Article  PubMed  CAS  Google Scholar 

  • Franklin R, Feng P, Milon B, Desouki MM, Singh KK, Kajdacsy-Balla A et al (2005) hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol Cancer 4:32. doi:10.1186/1476-4598-4-32

    Article  PubMed  CAS  Google Scholar 

  • Gaither LA, Eide DJ (2000) Functional expression of the human hZIP2 zinc transporter. J Biol Chem 275:5560–5564. doi:10.1074/jbc.275.8.5560

    Article  PubMed  CAS  Google Scholar 

  • Gaither L, Eide DJ (2001) The human ZIP1 transporter mediates zinc uptake in human K562 erythroleukemia cells. J Biol Chem 276:22258–22264. doi:10.1074/jbc.M101772200

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Gitschier J (1997) A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet 17:292–297. doi:10.1038/ng1197-292

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Kirschke CP, Gitschier J (2002) Functional characterization of a novel mammalian zinc transporter, ZnT6. J Biol Chem 277:26389–26395. doi:10.1074/jbc.M200462200

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Kirschke CP, Zhang Y, Yu Y-Y (2005) The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J Biol Chem 280:15456–15463. doi:10.1074/jbc.M412188200

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Kirschke CP, Zhang Y (2006) Decreased intracellular zinc in human tumorigenic prostate epithelial cells: a possible role in prostate cancer progression. Cancer Cell Int 6:10. doi:10.1186/1475-2867-6-10

    Article  PubMed  CAS  Google Scholar 

  • Jackson KA, Helston RM, McKay JA, O’Neill ED, Mathers JC, Ford D (2007) Splice variants of the human zinc transporter ZnT5 (SLC30A5) are differentially localized and regulated by zinc through transcription and mRNA stability. J Biol Chem 282:10423–10431. doi:10.1074/jbc.M610535200

    Article  PubMed  CAS  Google Scholar 

  • Kambe T, Narita H, Yamaguchi-Iwai Y, Hirose J, Amano T, Sugiura N et al (2002) Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic β cells. J Biol Chem 277:19049–19055. doi:10.1074/jbc.M200910200

    Article  PubMed  CAS  Google Scholar 

  • Kelleher SL, Lonnerdal B (2005) Zip3 plays a major role in zinc uptake into mammary epithelial cells and is regulated by prolactin. Am J Physiol Cell Physiol 288:C1042–C1047. doi:10.1152/ajpcell.00471.2004

    Article  PubMed  CAS  Google Scholar 

  • Kerr WK, Keresteci AG, Mayoh H (1960) The distribution of zinc with the human prostate. Cancer 13:550–554. doi:10.1002/1097-0142(196005/06)13:3<550::AID-CNCR2820130320>3.0.CO;2-X

    Article  PubMed  CAS  Google Scholar 

  • Kirschke CP, Huang L (2003) ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus. J Biol Chem 278:4096–4102. doi:10.1074/jbc.M207644200

    Article  PubMed  CAS  Google Scholar 

  • Kvist U, Björndahl L, Kjellberg S (1987) Sperm nuclear zinc, chromatin stability, and male fertility. Scanning Microsc 1:1241–1247

    PubMed  CAS  Google Scholar 

  • Liuzzi JP, Blanchard RK, Cousins RJ (2001) Differential regulation of zinc transporter 1, 2, and 4 mRNA expression by dietary zinc in rats. J Nutr 131:46–52

    PubMed  CAS  Google Scholar 

  • Marker PC, Donjacoura AA, Dahiyab R, Cunha GR (2003) Hormonal, cellular, and molecular control of prostatic development. Dev Biol 253:165–174. doi:10.1016/S0012-1606(02)00031-3

    Article  PubMed  CAS  Google Scholar 

  • Mawson CA, Fischer MI (1952) The occurrence of zinc in the human prostate gland. Can J Med Sci 30:336–339

    PubMed  CAS  Google Scholar 

  • McMahon RJ, Cousins RJ (1998) Regulation of the zinc transporter ZnT-1 by dietary zinc. Proc Natl Acad Sci USA 95:4841–4846. doi:10.1073/pnas.95.9.4841

    Article  PubMed  CAS  Google Scholar 

  • Michalczyk AA, Allen J, Blomeley RC, Ackland ML (2002) Constitutive expression of hZnT4 zinc transporter in human breast epithelial cells. Biochem J 15:105–113

    Google Scholar 

  • Murgia C, Vespignani I, Cerase J, Nobilo F, Perozzi G (1999) Cloning, expression, and vesicular localization of zinc transporter Dri 27/ZnT4 in intestinal tissue and cells. Am J Physiol 277:G1231–G1239

    PubMed  CAS  Google Scholar 

  • Palmiter RD, Findley SD (1995) Cloning and characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J 14:639–649

    PubMed  CAS  Google Scholar 

  • Palmiter R, Huang L (2004) Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch Eur J Physiol 447:744–751

    Article  CAS  Google Scholar 

  • Palmiter R, Cole TB, Findley SD (1996a) ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J 15:1784–1791

    PubMed  CAS  Google Scholar 

  • Palmiter R, Cole TB, Quaife CJ, Findley SD (1996b) ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci USA 93:14934–14939. doi:10.1073/pnas.93.25.14934

    Article  PubMed  CAS  Google Scholar 

  • Sekler I, Moran A, Hershfinkel M, Dori A, Margulis A, Birenzweig N et al (2002) Distribution of the zinc transporter ZnT-1 in comparison with chelatable zinc in the mouse brain. J Comp Neurol 447:201–209. doi:10.1002/cne.10224

    Article  PubMed  CAS  Google Scholar 

  • Singh J, Zhu Q, Handelsman DJ (1999) Stereological evaluation of mouse prostate development. J Androl 20:251–258

    PubMed  CAS  Google Scholar 

  • Taylor K, Morgan HE, Johnson A, Nicholson RI (2004) Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters. Biochem J 377:131–139. doi:10.1042/BJ20031183

    Article  PubMed  CAS  Google Scholar 

  • Valentine RA, Jackson KA, Christie GR, Mathers JC, Taylor PM, Ford D (2007) ZnT5 variant B is a bidirectional zinc transporter and mediates zinc uptake in human intestinal Caco-2 cells. J Biol Chem 282:14389–14393. doi:10.1074/jbc.M701752200

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J (2002) A novel member of a zinc transporter family defective in acrodermatitis enteropathica. Am J Hum Genet 71:66–73. doi:10.1086/341125

    Article  PubMed  CAS  Google Scholar 

  • Yu YY, Kirschke CP, Huang L (2007) Immunohistochemical analysis of ZnT1, 4, 5, 6, and 7 in the mouse gastrointestinal tract. J Histochem Cytochem 55:223–234. doi:10.1369/jhc.6A7032.2006

    Article  PubMed  CAS  Google Scholar 

  • Zaichick VY, Sviridova TV, Zaichick SV (1997) Zinc in the human prostate gland: normal, hyperplastic and cancerous. Int Urol Nephrol 29:565–574. doi:10.1007/BF02552202

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We special thank Dr. Shannon L. Kelleher of the Pennsylvania State University for the αZNT2 antibody. We thank Dr. Alexander Borowsky of the Center for Comparative Medicine, UC Davis, for technical support in identification of prostatic lobes. This work was supported by the United States Department of Agriculture CRIS:5306-515-30-014-00D and the NIH grant P60MD00222.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirschke, C.P., Huang, L. Expression of the ZNT (SLC30) family members in the epithelium of the mouse prostate during sexual maturation. J Mol Hist 39, 359–370 (2008). https://doi.org/10.1007/s10735-008-9174-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-008-9174-1

Keywords

Navigation