Skip to main content

Advertisement

Log in

The spatio-temporal expression pattern of cytoplasmic Cu/Zn superoxide dismutase (SOD1) mRNA during mouse embryogenesis

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

The cytoplasmic Cu/Zn-superoxide dismutase (SOD1) represents along with catalase and glutathione peroxidase at the first defense line against reactive oxygen species in all aerobic organisms, but little is known about its distribution in developing embryos. In this study, the expression patterns of SOD1 mRNA in mouse embryos were investigated using real-time RT-PCR and in situ hybridization analyses. Expression of SOD1 mRNA was detected in all embryos with embryonic days (EDs) 7.5–18.5. The signal showed the weakest level at ED 12.5, but the highest level at ED 15.5. SOD1 mRNA was expressed in chorion, allantois, amnion, and neural folds at ED 7.5 and in neural folds, notochord, neuromeres, gut, and primitive streak at ED 8.5. In central nervous system, SOD1 mRNA was expressed greatly in embryos of EDs 9.5–11.5, but weakly in embryos of ED 12.5. At EDs 9.5–12.5, the expression of SOD1 mRNA was high in sensory organs such as tongue, olfactory organ (nasal prominence) and eye (optic vesicle), while it was decreased in ear (otic vesicle) after ED 10.5. In developing limbs, SOD1 mRNA was greatly expressed in forelimbs at EDs 9.5–11.5 and in hindlimbs at EDs 10.5–11.5. The signal increased in liver, heart and genital tubercle after ED 11.5. In the sections of embryos after ED 13.5, SOD1 mRNA was expressed in various tissues and especially high in mucosa and metabolically active sites such as lung, kidney, stomach, and intestines and epithelial cells of skin, whisker follicles, and ear and nasal cavities. These results suggest that SOD1 may be related to organogenesis of embryos as an antioxidant enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28:463–499

    Article  PubMed  CAS  Google Scholar 

  • Baek IJ, Yon JM, Lee BJ, Yun YW, Yu WJ, Hong JT, Ahn B, Kim YB, Kim DJ, Kang JK, Nam SY (2005) Expression pattern of cytosolic glutathione peroxidase (cGPx) mRNA during mouse embryogenesis. Anat Embryol (Berl) 209:315–321

    Article  CAS  Google Scholar 

  • Bewley GC (1988) cDNA and deduced amino acid sequence of murine Cu-Zn superoxide dismutase. Nucleic Acids Res 16:2728

    Article  PubMed  CAS  Google Scholar 

  • Carney EW, Scialli AR, Watson RE, DeSesso JM (2004) Mechanisms regulating toxicant disposition to the embryo during early pregnancy: an interspecies comparison. Birth Defects Res C Embryo Today 72:345–360

    Article  PubMed  CAS  Google Scholar 

  • Cederberg J, Siman CM, Eriksson UJ (2001) Combined treatment with vitamin E and vitamin C decreases oxidative stress and improves fetal outcome in experimental diabetic pregnancy. Pediatr Res 49:755–762

    Article  PubMed  CAS  Google Scholar 

  • Chan PH (1994) Oxygen radicals in focal cerebral ischemia. Brain Pathol 4:59–65

    Article  PubMed  CAS  Google Scholar 

  • Chen SY, Sulik KK (1996) Free radicals and ethanol-induced cytotoxicity in neural crest cells. Alcohol Clin Exp Res 20:1071–1076

    Article  PubMed  CAS  Google Scholar 

  • Chen SY, Dehart DB, Sulik KK (2004) Protection from ethanol-induced limb malformations by the superoxide dismutase/catalase mimetic, EUK-134. FASEB J 18:1234–1236

    Article  PubMed  CAS  Google Scholar 

  • Correia KM, Conlon RA (2001) Whole-mount in situ hybridization to mouse embryos. Methods 23:335–338

    Article  PubMed  CAS  Google Scholar 

  • Crapo JD, Oury T, Rabouille C, Slot JW, Chang LY (1992) Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc Natl Acad Sci USA 89:10405–10409

    Article  PubMed  CAS  Google Scholar 

  • Danchenko OO, Kalytka VV (2002) Formation of antioxidant defense system of geese in embryogenesis and early postnatal ontogenesis. Ukr Biokhim Zh 74:120–124

    PubMed  CAS  Google Scholar 

  • Fantel AG, Barber CV, Carda MB, Tumbic RW, Mackler B (1992) Studies of the role of ischemia/reperfusion and superoxide anion radical production in the teratogenicity of cocaine. Teratology 46:293–300

    Article  PubMed  CAS  Google Scholar 

  • Fantel AG, Person RE, Tumbic RW, Nguyen TD, Mackler B (1995) Studies of mitochondria in oxidative embryotoxicity. Teratology 52:190–195

    Article  PubMed  CAS  Google Scholar 

  • Fantel AG (1996) Reactive oxygen species in developmental toxicity: review and hypothesis. Teratology 53:196–217

    Article  PubMed  CAS  Google Scholar 

  • Fantel AG, Mackler B, Stamps LD, Tran TT, Person RE (1998) Reactive oxygen species and DNA oxidation in fetal rat tissues. Free Radic Biol Med 25:95–103

    Article  PubMed  CAS  Google Scholar 

  • Ferveur JF, Savarit F, O’Kane CJ, Sureau G, Greenspan RJ, Jallon JM (1997) Genetic feminization of pheromones and its behavioral consequences in Drosophila males. Science 276:1555–1558

    Article  PubMed  CAS  Google Scholar 

  • Goto Y, Noda Y, Mori T, Nakano M (1993) Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic Biol Med 15:69–75

    Article  PubMed  CAS  Google Scholar 

  • Grankvist K, Marklund SL, Taljedal IB (1981) CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 199:393–398

    PubMed  CAS  Google Scholar 

  • Guerin P, El Mouatassim S, Menezo Y (2001) Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update 7:175–189

    Article  PubMed  CAS  Google Scholar 

  • Gulesserian T, Seidl R, Hardmeier R, Cairns N, Lubec G. (2001) Superoxide dismutase SOD1, encoded on chromosome 21, but not SOD2 is overexpressed in brains of patients with Down syndrome. J Investig Med 49(1):41–46

    Article  PubMed  CAS  Google Scholar 

  • Hawk SN, Lanoue L, Keen CL, Kwik-Uribe CL, Rucker RB, Uriu-Adams JY (2003) Copper-deficient rat embryos are characterized by low superoxide dismutase activity and elevated superoxide anions. Biol Reprod 68:896–903

    Article  PubMed  CAS  Google Scholar 

  • Ho YS, Gargano M, Cao J, Bronson RT, Heimler I, Hutz RJ (1998) Reduced fertility in female mice lacking copper-zinc superoxide dismutase. J Biol Chem 273:7765–7769

    Article  PubMed  CAS  Google Scholar 

  • Hussain S, Slikker W Jr, Ali SF (1995) Age-related changes in antioxidant enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione in different regions of mouse brain. Int J Dev Neurosci 13:811–817

    Article  PubMed  CAS  Google Scholar 

  • Inarrea P, Moini H, Han D, Rettori D, Aguilo I, Alava MA, Iturralde M, Cadenas E (2007) Mitochondrial respiratory chain and thioredoxin reductase regulate intermembrane Cu,Zn-superoxide dismutase activity: implications for mitochondrial energy metabolism and apoptosis. Biochem J 405(1):173–179

    PubMed  CAS  Google Scholar 

  • Italiano JE, Jr Shivdasani RA (2003) Megakaryocytes and beyond: the birth of platelets. J Thromb Haemost 1(6):1174–1182

    Article  PubMed  CAS  Google Scholar 

  • Karabulut AK, Ulger H, Pratten M (2000) Teratogenicity of edoferon kappa A, a molecule derived from salicylate, in cultured rat embryos: differences from salicylate and interaction with free oxygen radical scavenging enzymes. Anat Histol Embryol 29(6):363–370

    Article  PubMed  CAS  Google Scholar 

  • Kotch LE, Chen SY, Sulik KK (1995) Ethanol-induced teratogenesis: free radical damage as a possible mechanism. Teratology 52:128–136

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni-Narla A, Getchell TV, Getchell ML (1997) Differential expression of manganese and copper-zinc superoxide dismutases in the olfactory and vomeronasal receptor neurons of rats during ontogeny. J Comp Neurol 381:31–40

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11:376–381

    Article  PubMed  CAS  Google Scholar 

  • Marklund SL, Holme E, Hellner L (1982) Superoxide dismutase in extracellular fluids. Clin Chim Acta 126:41–51

    Article  PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • Noor R, Mittal S, Iqbal J (2002) Superoxide dismutase–applications and relevance to human diseases. Med Sci Monit 8:RA210–RA215

    PubMed  CAS  Google Scholar 

  • Ohlemiller KK, McFadden SL, Ding DL, Flood DG, Reaume AG, Hoffman EK, Scott RW, Wright JS, Putcha GV, Salvi RJ (1999) Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss. Audiol Neurootol 4:237–246

    Article  PubMed  CAS  Google Scholar 

  • Okado-Matsumoto A, Fridovich I (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J Biol Chem 276: 38388–38393

    Article  PubMed  CAS  Google Scholar 

  • Olivier B, Walter W (1998) A simplified in situ hybridization protocol using non-radioactivety labeled probes to detect abundant and rare mRNAs on tissue sections. Biochemica 1:10–16

    Google Scholar 

  • Parman T, Wiley MJ, Wells PG (1999) Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat Med 5:582–585

    Article  PubMed  CAS  Google Scholar 

  • Peluffo H, Acarin L, Faiz M, Castellano B, Gonzalez B (2005) Cu/Zn superoxide dismutase expression in the postnatal rat brain following an excitotoxic injury. J Neuroinflammation 2:12

    Article  PubMed  CAS  Google Scholar 

  • Radyuk SN, Klichko VI, Orr WC (2004) Profiling Cu,Zn-superoxide dismutase expression in Drosophila melanogaster–a critical regulatory role for intron/exon sequence within the coding domain. Gene 17:37–48

    Article  CAS  Google Scholar 

  • Rarey KE, Yao X (1996) Localization of Cu/Zn-SOD and Mn-SOD in the rat cochlea. Acta Otolaryngol 116:833–835

    PubMed  CAS  Google Scholar 

  • Reymond A, Marigo V, Yaylaoglu MB, Leoni A, Ucla C, Scamuffa N, Caccioppoli C, Dermitzakis ET, Lyle R, Banfi S, Eichele G, Antonarakis SE, Ballabio A (2002) Human chromosome 21 gene expression atlas in the mouse. Nature 5;420(6915):582–586

    Article  CAS  Google Scholar 

  • Roberts R (1990) The mouse: Its reproduction and development. Oxford university press, Oxford New York Tokyo, pp 209–212

    Google Scholar 

  • Sivan E, Lee YC, Wu YK, Reece EA (1997) Free radical scavenging enzymes in fetal dysmorphogenesis among offspring of diabetic rats. Teratology 56:343–349

    Article  PubMed  CAS  Google Scholar 

  • St Clair DK, Oberley TD, Muse KE, St Clair WH (1994) Expression of manganese superoxide dismutase promotes cellular differentiation. Free Radic Biol Med 16:275–282

    Article  PubMed  CAS  Google Scholar 

  • Surai PF (1999) Tissue-specific changes in the activities of antioxidant enzymes during the development of the chicken embryo. Br Poult Sci 40:397–405

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 10;160(1):1–40

    Article  CAS  Google Scholar 

  • Ward PA, Cunningham TW, McCulloch KK, Phan SH, Powell J, Johnson KJ (1988) Platelet enhancement of 02- responses in stimulated human neutrophils: Identification of platelet factor as adenine nucleotide. Lab Invest 58:37–47

    PubMed  CAS  Google Scholar 

  • Wispe JR, Warner BB, Clark JC, Da CR, Neuman J, Glasser SW, Crapo JD, Chang LY, Whitsett JA (1992) Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury. J Biol Chem 267:23937–23941

    PubMed  CAS  Google Scholar 

  • Zimmerman EF, Potturi RB, Resnick E, Fisher E (1994) Role of oxygen free radicals in cocaine-induced vascular disruption in mice. Teratology 49:192–201

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund (KRF-2005-005-J15002 and KRF-2006-312-E00151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Yoon Nam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yon, JM., Baek, IJ., Lee, SR. et al. The spatio-temporal expression pattern of cytoplasmic Cu/Zn superoxide dismutase (SOD1) mRNA during mouse embryogenesis. J Mol Hist 39, 95–103 (2008). https://doi.org/10.1007/s10735-007-9134-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-007-9134-1

Keywords

Navigation