Skip to main content
Log in

The how and why of adult neurogenesis

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

An Erratum to this article was published on 29 June 2010

Abstract

Brain plasticity refers to the brain’s ability to change structure and/or function during maturation, learning, environmental challenges, or disease. Multiple and dissociable plastic changes in the adult brain involve many different levels of organization, ranging from molecules to systems, with changes in neural elements occurring hand-in-hand with changes in supportive tissue elements, such as glia cells and blood vessels. There is now substantial evidence indicating that new functional neurons are constitutively generated from endogenous pools of neural stem cells in restricted areas of the mammalian brain, throughout life. So, in addition to all the other known structural changes, entire new neurons can be added to the existing network circuitry. This addition of newborn neurons provides the brain with another tool for tinkering with the morphology of its own functional circuitry. Although the ongoing neurogenesis and migration have been extensively documented in non-mammalian species, its characteristics in mammals have just been revealed and thus several questions remain yet unanswered. Is adult neurogenesis an atavism, an empty-running leftover from evolution? What is adult neurogenesis good for and how does the brain ‘know’ that more neurons are needed? How is this functional demand translated into signals a precursor cell can detect? Adult neurogenesis may represent an adaptive response to challenges imposed by an environment and/or internal state of the animal. To ensure this function, the production, migration, and survival of newborn neurons must be tightly controlled. We attempt to address some of these questions here, using the olfactory bulb as a model system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aliotta JM, Passero M, Meharg J, Klinger J, Dooner MS, Pimentel J, Quesenberry PJ (2005). Stem cells and pulmonary metamorphosis: new concepts in repair and regeneration. J Cell Physiol 204(3):725–741

    Article  CAS  PubMed  Google Scholar 

  • Altman J (1962) Are new neurons formed in the brains of adult mammals? Science 135:1127–1128

    Article  CAS  PubMed  Google Scholar 

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–458

    Article  CAS  PubMed  Google Scholar 

  • Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–336

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634

    CAS  PubMed  Google Scholar 

  • Bayer SA, Yackel JW, Puri PS (1982) Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science 216:890–892

    Article  CAS  PubMed  Google Scholar 

  • Becker S (2005). A computational principle for hippocampal learning and neurogenesis. Hippocampus 15:722–738

    Article  PubMed  Google Scholar 

  • Blanpain C, Horsley V, Fuchs E (2007). Epithelial stem cells: turning over new leaves. Cell 128(3):445–458

    Article  CAS  PubMed  Google Scholar 

  • Cameron HA, Woolley CS, McEwen BS, Gould E (1993) Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neurosci 56:337–344

    Article  CAS  Google Scholar 

  • Cecchi GA, Petreanu LT, Alvarez-Buylla A et al (2001) Unsupervised learning and adaptation in a model of adult neurogenesis. J Comput Neurosci 11:175–182

    Article  CAS  PubMed  Google Scholar 

  • Clayton H, Titley I, Vivanco M (2004). Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp Cell Res 297(2):444–460

    Article  CAS  PubMed  Google Scholar 

  • Corotto FS, Henegar JA, Maruniak JA (1993) Neurogenesis persists in the subependymal layer of the adult mouse brain. Neurosci Lett 149:111–114

    Article  CAS  PubMed  Google Scholar 

  • Curtis MA, Kam M, Nannmark U et al (2007) Human neuroblast migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    CAS  PubMed  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  CAS  PubMed  Google Scholar 

  • Gage FH, Coates PW, Palmer TD et al (1995) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci USA 92:11879–11883

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Verdugo JM, Doetsch F, Wichterle H et al (1998) Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol 36:234–248

    Article  CAS  PubMed  Google Scholar 

  • Gheusi G, Lledo PM (2007) Control of early events in olfactory processing by adult neurogenesis. Chem Senses 32:397–409

    Google Scholar 

  • Gilad Y, Wiebe V, Przeworski M et al (2004) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 2:E5

    Article  PubMed  Google Scholar 

  • Gould E, Tanapat P, McEwen BS et al (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA 95:3168–3171

    Article  CAS  PubMed  Google Scholar 

  • Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002). A stem cell molecular signature. Science 298(5593):601–604

    Article  CAS  PubMed  Google Scholar 

  • Johansson CB, Momma S, Clarke DL et al (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34

    Article  CAS  PubMed  Google Scholar 

  • Kaplan MS, Hinds JW (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197:1092–1094

    Article  CAS  PubMed  Google Scholar 

  • Kempermann G (2002) Why new neurons? Possible functions for adult hippocampal neurogenesis. J Neurosci 22:635–638

    CAS  PubMed  Google Scholar 

  • Kornack DR, Rakic P (2001) The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA 98:4752–4757

    Article  CAS  PubMed  Google Scholar 

  • Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    CAS  PubMed  Google Scholar 

  • Lafon-Cazal M, Adjali O, Galeotti N et al (2003) Proteomic analysis of astrocytic secretion in the mouse. Comparison with the cerebrospinal fluid proteome. J Biol Chem 278:24438–24448

    Article  CAS  PubMed  Google Scholar 

  • Laska M, Seibt A, Weber A (2000) “Microsmatic” primates revisited: Olfactory sensitivity in the squirrel monkey. Chem Senses 25:47–53

    Article  CAS  PubMed  Google Scholar 

  • Li L, Xie T (2005). Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631

    Article  CAS  PubMed  Google Scholar 

  • Lim DA, Huang YC, Alvarez-Buylla A (2007) The adult neural stem cell niche: lessons for future neural cell replacement strategies. Neurosurg Clin N Am 18(1):81–92, ix

    Google Scholar 

  • Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7(3):179–193

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    Article  CAS  PubMed  Google Scholar 

  • Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189

    Article  CAS  PubMed  Google Scholar 

  • Lyngbaek S, Schneider M, Hansen JL, Sheikh SP (2007) Cardiac regeneration by resident stem and progenitor cells in the adult heart. Basic Res Cardiol 102(2):101–114

    Article  PubMed  Google Scholar 

  • Marshman E, Booth C, Potten CS (2002). The intestinal epithelial stem cell. Bioessays 24(1):91–98

    Article  PubMed  Google Scholar 

  • Martin CM, Russell JL, Ferdous A, Garry DJ (2006) Molecular signatures define myogenic stem cell populations. Stem Cell Rev 2(1):37–42

    Article  CAS  PubMed  Google Scholar 

  • Miller MW, Nowakowski RS (1998) Use of bromodeoxyuridine-immunohistochemistry to examine the proliferation, migration and time of origin of cells in the central nervous system. Brain Res 457:44–52

    Article  Google Scholar 

  • Morigi M, Benigni A, Remuzzi G, Imberti B (2006) The regenerative potential of stem cells in acute renal failure. Cell Transplant 15(l):111–117

    Article  Google Scholar 

  • Morshead CM, Reynolds BA, Craig CG et al (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Nabeshima Y, Yoshida S (2007). Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 12(2):195–206

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm F (2002) Why are some neurons replaced in adult brain? J Neurosci 22:624–628

    CAS  PubMed  Google Scholar 

  • Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (2004) Neuroscience: immigration denied. Nature 427:685–686

    Article  CAS  PubMed  Google Scholar 

  • Ramon y Cajal S (1928) Degeneration and Regeneration of the Nervous System. New York

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  CAS  PubMed  Google Scholar 

  • Ridet JL, Malhotra SK, Privat A et al (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  CAS  PubMed  Google Scholar 

  • Rouquier S, Blancher A, Giorgi D (2000) The olfactory receptor gene repertoire in primates and mouse: Evidence for reduction of the functional fraction in primates. Proc Natl Acad Sci USA 97:2870–2874

    Article  CAS  PubMed  Google Scholar 

  • Sanai N, Tramontin AD, Quinones-Hinojosa A et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744

    Article  CAS  PubMed  Google Scholar 

  • Schipke CG, Kettenmann H (2004) Astrocyte responses to neuronal activity. Glia 47:226–232

    Article  PubMed  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25

    CAS  PubMed  Google Scholar 

  • Seri B, Garcia-Verdugo JM, Collado-Morente L et al (2004) Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 478:359–378

    Article  PubMed  Google Scholar 

  • Seri B, Garcia-Verdugo JM, McEwen BS et al (2001). Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160

    CAS  PubMed  Google Scholar 

  • Shen Q, Goderie SK, Jin L et al (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340

    Article  CAS  PubMed  Google Scholar 

  • Shepherd GM (2004) The human sense of smell: Are we better than we think? PLoS Biol 2:572–575

    Article  CAS  Google Scholar 

  • Spassky N, Merkle FT, Flames N et al (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18

    Article  CAS  PubMed  Google Scholar 

  • Temple S, Alvarez-Buylla A (1999) Stem cells in the adult mammalian central nervous system. Curr Opin Neurobiol 9:135–141

    Article  CAS  PubMed  Google Scholar 

  • Van Praag H, Schinder AF, Christie BR et al (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    Article  PubMed  Google Scholar 

  • Wurmser AE, Nakashima K, Summers RG, et al (2004) Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430:350–356

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Cecile Moreau for help with the artwork. Our laboratory is supported by the Pasteur Institute, the Institut de France (Fundation NRJ), INSERM (Contract # CS0303), Fédération pour la Recherche sur le Cerveau, the Fondation pour la Recherche Médicale, the Agence Nationale de la Recherche (ANR-05-Neur-028-01), the CNRS, the European Neuroscience Institutes Network (ENI-NET; LSHM-CT-2005-019063) and the Groupe Arpège.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inmaculada Ortega-Perez.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10735-010-9269-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortega-Perez, I., Murray, K. & Lledo, PM. The how and why of adult neurogenesis. J Mol Hist 38, 555–562 (2007). https://doi.org/10.1007/s10735-007-9114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-007-9114-5

Keywords

Navigation