Skip to main content

Advertisement

Log in

Notch1 expression and ligand interactions in progenitor cells of the mouse olfactory epithelium

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Despite the relatively simplified organization of the olfactory epithelium (OE), our understanding of the factors that regulate its cellular diversity is limited. Genetic and localization studies suggest that Notch signaling may be important in this process. We characterize here a population of Notch1 + olfactory basal cells in embryonic mice that coordinately express both the Notch effector Hes5 and the glycosyltransferase Lfng. These cells are distinct from Mash1 + neuronal precursors, but give rise to sensory neurons, suggesting that Notch1 signals may in part function to maintain a neurogenic progenitor pool. Furthermore, Lfng + cells also generate a population of cells in the migratory mass that appear to be ensheathing glial precursors, indicating potential multipotency in these progenitors. The Notch ligand Dll4 is expressed by basal OE cells that are interspersed with Notch1 + progenitors during later OE neurogenesis. In contrast, mice deficient in Dll1 exhibit a smaller OE and a loss of Hes5 expression, indicating an earlier function in olfactory progenitor cell development. Taken together, these results further support a role for Notch signaling in the regulation of olfactory neurogenesis and cell diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baek JH, Hatakeyama J, Sakamoto S, Ohtsuka T, Kageyama R (2006) Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 133:2467–2476

    Article  PubMed  CAS  Google Scholar 

  • Basak O, Taylor V (2007) Identification of self-replicating multipotent progenitors in the embryonic nervous system by high Notch activity and Hes5 expression. Eur J Neurosci 25:1006–1022

    Article  PubMed  Google Scholar 

  • Beites CL, Kawauchi S, Crocker CE, Calof AL (2005) Identification and molecular regulation of neural stem cells in the olfactory epithelium. Exp Cell Res 306:309–316

    Article  PubMed  CAS  Google Scholar 

  • Benedito R, Duarte A (2005) Expression of Dll4 during mouse embryogenesis suggests multiple developmental roles. Gene Exp Patterns 5:750–755

    Article  CAS  Google Scholar 

  • Bruckner K, Perez L, Clausen H, Cohen S. (2000) Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 406:411–415

    Article  PubMed  CAS  Google Scholar 

  • Carson C, Murdoch B, Roskams AJ (2006) Notch 2 and Notch 1/3 segregate to neuronal and glial lineages of the developing olfactory epithelium. Dev Dyn 235:1678–1688

    Article  PubMed  CAS  Google Scholar 

  • Casarosa S, Fode C, Guillemot F (1999) Mash1 regulates neurogenesis in the ventral telencephalon. Development 126:525–534

    PubMed  CAS  Google Scholar 

  • Cau E, Gradwohl G, Fode C, Guillemot F (1997) Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 124:1611–1621

    PubMed  CAS  Google Scholar 

  • Cau E, Gradwohl G, Casarosa S, Kageyama R, Guillemot F (2000) Hes genes regulate sequential stages of neurogenesis in the olfactory epithelium. Development 127:2323–2332

    PubMed  CAS  Google Scholar 

  • Cau E, Casarosa S, Guillemot F (2002) Mash1 and Ngn1 control distinct steps of determination and differentiation in the olfactory sensory neuron lineage. Development 129:1871–1880

    PubMed  CAS  Google Scholar 

  • Chuah MI, Au C (1991) Olfactory Schwann cells are derived from precursor cells in the olfactory epithelium. J Neurosci Res 29:172–180

    Article  PubMed  CAS  Google Scholar 

  • Cohen B, Bashirullah A, Dagnino L, Campbell C, Fisher WW, Leow CC, Whiting E, Ryan D, Zinyk D, Boulianne G, Hui CC, Gallie B, Phillips RA, Lipshitz HD, Egan SE (1997) Fringe boundaries coincide with Notch-dependent patterning centres in mammals and alter Notch-dependent development in Drosophila. Nat Genet 16:283–288

    Article  PubMed  CAS  Google Scholar 

  • de la Pompa JL, Wakeham A, Correia KM, Samper E, Brown S, Aguilera RJ, Nakano T, Honjo T, Mak TW, Rossant J, Conlon RA (1997) Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124:1139–1148

    Google Scholar 

  • Doucette R (1989) Development of the nerve fiber layer in the olfactory bulb of mouse embryos. J Comp Neurol 285:514–527

    Article  PubMed  CAS  Google Scholar 

  • Dunwoodie SL, Henrique D, Harrison SM, Beddington RS (1997) Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 124:3065–3076

    PubMed  CAS  Google Scholar 

  • Fairless R, Barnett SC (2005) Olfactory ensheathing cells: their role in central nervous system repair. Int J Biochem Cell Biol 37:693–699

    Article  PubMed  CAS  Google Scholar 

  • Fode C, Gradwohl G, Morin X, Dierich A, LeMeur M, Goridis C, Guillemot F (1998) The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode-derived sensory neurons. Neuron 20:483–494

    Article  PubMed  CAS  Google Scholar 

  • Gaiano N, Nye JS, Fishell G (2000) Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26:395–404

    Article  PubMed  CAS  Google Scholar 

  • Gong Q, Shipley MT (1995) Evidence that pioneer olfactory axons regulate telencephalon cell cycle kinetics to induce the formation of the olfactory bulb. Neuron 14:91–101

    Article  PubMed  CAS  Google Scholar 

  • Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75:463–476

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama J, Kageyama R (2006) Notch1 expression is spatiotemporally correlated with neurogenesis and negatively regulated by Notch1-independent Hes genes in the developing nervous system. Cereb Cortex 16(Suppl 1):i132–i137

    Article  PubMed  Google Scholar 

  • Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780

    Article  PubMed  Google Scholar 

  • Henion TR, Zhou D, Wolfer DP, Jungalwala FB, Hennet T (2001) Cloning of a mouse beta 1,3 N-acetylglucosaminyltransferase GlcNAc(beta 1,3)Gal(beta 1,4)Glc-ceramide synthase gene encoding the key regulator of lacto-series glycolipid biosynthesis. J Biol Chem 276:30261–30269

    Article  PubMed  CAS  Google Scholar 

  • Henrique D, Hirsinger E, Adam J, Le Roux I, Pourquie O, Ish-Horowicz D, Lewis J. (1997) Maintenance of neuroepithelial progenitor cells by Delta-Notch signalling in the embryonic chick retina. Curr Biol. 7:661–670

    Article  PubMed  CAS  Google Scholar 

  • Hicks C, Johnston SH, diSibio G, Collazo A, Vogt TF, Weinmaster G (2000) Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nat Cell Biol 2:515–520

    Article  PubMed  CAS  Google Scholar 

  • Hitoshi S, Alexson T, Tropepe V, Donoviel D, Elia AJ, Nye JS, Conlon RA, Mak TW, Bernstein A, van der Kooy D (2002) Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 16:846–858

    Article  PubMed  CAS  Google Scholar 

  • Hrabe de Angelis M, McIntyre J 2nd, Gossler A (1997) Maintenance of somite borders in mice requires the Delta homologue Dll1. Nature 386:717–721

    Article  PubMed  CAS  Google Scholar 

  • Huard JM, Youngentob SL, Goldstein BJ, Luskin MB, Schwob JE (1998) Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J Comp Neurol. 400:469–486

    Article  PubMed  CAS  Google Scholar 

  • Johnston SH, Rauskolb C, Wilson R, Prabhakaran B, Irvine KD, Vogt TF (1997) A family of mammalian Fringe genes implicated in boundary determination and the Notch pathway. Development 124:2245–2254

    PubMed  CAS  Google Scholar 

  • Kafitz KW, Greer CA (1999) Olfactory ensheathing cells promote neurite extension from embryonic olfactory receptor cells in vitro. Glia 25:99–110

    Article  PubMed  CAS  Google Scholar 

  • Kawauchi S, Shou J, Santos R, Hebert JM, McConnell SK, Mason I, Calof AL (2005) Fgf8 expression defines a morphogenetic center required for olfactory neurogenesis and nasal cavity development in the mouse. Development 132:5211–5223

    Article  PubMed  CAS  Google Scholar 

  • Kusumi K, Sun ES, Kerrebrock AW, Bronson RT, Chi DC, Bulotsky MS, Spencer JB, Birren BW, Frankel WN, Lander ES (1998) The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nat Genet 19:274–278

    Article  PubMed  CAS  Google Scholar 

  • Ladi E, Nichols JT, Ge W, Miyamoto A, Yao C, Yang LT, Boulter J, Sun YE, Kintner C, Weinmaster G (2006) The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J Cell Biol 170:983–992

    Article  Google Scholar 

  • Lindsell CE, Boulter J, diSibio G, Gossler A, Weinmaster G (1996) Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand–receptor pairs that may function in neural development. Mol Cell Neurosci 8:14–27

    Article  PubMed  CAS  Google Scholar 

  • Long JE, Garel S, Depew MJ, Tobet S, Rubenstein JL (2003) DLX5 regulates development of peripheral and central components of the olfactory system. J Neurosci 23:568–578

    PubMed  CAS  Google Scholar 

  • Louvi A, Artavanis-Tsakonas S (2006) Notch signalling in vertebrate neural development. Nat Rev Neurosci 2:93–102

    Article  Google Scholar 

  • Jowett T (2001) Double in situ hybridization techniques in zebrafish. Methods 2:345–358

    Article  Google Scholar 

  • Mackay-Sim A, Kittel PW (1991) On the life span of olfactory receptor neurons. Eur J Neurosci 3:209–215

    Article  PubMed  Google Scholar 

  • Ma Q, Chen Z, del Barco Barrantes I, de la Pompa JL, Anderson DJ (1998) Neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482

    Article  PubMed  CAS  Google Scholar 

  • Manglapus GL, Youngentob SL, Schwob JE (2004) Expression patterns of basic helix-loop-helix transcription factors define subsets of olfactory progenitor cells. J Comp Neurol. 479:216–233

    Article  PubMed  CAS  Google Scholar 

  • Mendoza AS, Breipohl W, Miragall F (1982) Cell migration from the chick olfactory placode: a light and electron microscopic study. J Embryol Exp Morphol 69:47–59

    PubMed  CAS  Google Scholar 

  • Mitsiadis TA, Gayet O, Zhang N, Carroll P (2001) Expression of Deltex1 during mouse embryogenesis: comparison with Notch1, 2 and 3 expression. Mech Dev 109:399–403

    Article  PubMed  CAS  Google Scholar 

  • Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L, Wilson R, Wang Y, Stanley P, Irvine KD, Haltiwanger RS, Vogt TF (2000) Fringe is a glycosyltransferase that modifies Notch. Nature 406:369–375

    Article  PubMed  CAS  Google Scholar 

  • Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R (1996) Visualizing an olfactory sensory map. Cell 87:675–686

    Article  PubMed  CAS  Google Scholar 

  • Morales AV, Yasuda Y, Ish-Horowicz D (2002) Periodic Lunatic fringe expression is controlled during segmentation by a cyclic transcriptional enhancer responsive to notch signaling. Dev Cell 3:63–74

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Perez SE, Qiao Z, Verdi JM, Hicks C, Weinmaster G, Anderson DJ (2000) Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101:499–510

    Article  PubMed  CAS  Google Scholar 

  • Mumm JS, Shou J, Calof AL (1996) Colony-forming progenitors from mouse olfactory epithelium: evidence for feedback regulation of neuron production. Proc Natl Acad Sci USA. 93:11167–11172

    Article  CAS  Google Scholar 

  • Murray RC, Navi D, Fesenko J, Lander AD, Calof AL (2003) Widespread defects in the primary olfactory pathway caused by loss of Mash1 function. J Neurosci 23:1769–1780

    PubMed  CAS  Google Scholar 

  • Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R (1999) Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J 18:2196–2207

    Article  PubMed  CAS  Google Scholar 

  • Panin VM, Papayannopoulos V, Wilson R, Irvine KD (1997) Fringe modulates Notch–ligand interactions. Nature 387:908–912

    Article  PubMed  CAS  Google Scholar 

  • Panin VM, Shao L, Lei L, Moloney DJ, Irvine KD, Haltiwanger RS (2002) Notch ligands are substrates for protein O-fucosyltransferase-1 and Fringe. J Biol Chem 277:29945–29952

    Article  PubMed  CAS  Google Scholar 

  • Scheer N, Groth A, Hans S, Campos-Ortega JA (2001) An instructive function for Notch in promoting gliogenesis in the zebrafish retina. Development 128:1099–1107

    PubMed  CAS  Google Scholar 

  • Schwarting GA, Kostek C, Ahmad N, Dibble C, Pays L, Puschel AW (2000) Semaphorin 3A is required for guidance of olfactory axons in mice. J Neurosci 20:7691–7697

    PubMed  CAS  Google Scholar 

  • Schwarting GA, Henion TR, Nugent JD, Caplan B, Tobet S (2006) Stromal cell-derived factor-1 (chemokine C-X-C motif ligand 12) and chemokine C-X-C motif receptor 4 are required for migration of gonadotropin-releasing hormone neurons to the forebrain. J Neurosci 26:6834–6840

    Article  PubMed  CAS  Google Scholar 

  • Schwarzenbacher K, Fleischer J, Breer H, Conzelmann S (2004) Expression of olfactory receptors in the cribriform mesenchyme during prenatal development. Gene Exp Patterns 4:543–552

    Article  CAS  Google Scholar 

  • Schwarzenbacher K, Fleischer J, Breer H (2006) Odorant receptor proteins in olfactory axons and in cells of the cribriform mesenchyme may contribute to fasciculation and sorting of nerve fibers. Cell Tissue Res 323:211–219

    Article  PubMed  CAS  Google Scholar 

  • Schwob JE (2002) Neural regeneration and the peripheral olfactory system. Anat Rec 269:33–49

    Article  PubMed  Google Scholar 

  • Shao L, Moloney DJ, Haltiwanger R (2003) Fringe modifies O-fucose on mouse Notch1 at epidermal growth factor-like repeats within the ligand-binding site and the Abruptex region. J Biol Chem 278:7775–7782

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Zhong W, Jan YN, Temple S (2002) Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development 129:4843–4853

    PubMed  CAS  Google Scholar 

  • Thomas GB, van Meyel DJ (2007) The glycosyltransferase Fringe promotes Delta-Notch signaling between neurons and glia, and is required for subtype-specific glial gene expression. Development 134:591–600

    Article  PubMed  CAS  Google Scholar 

  • Udolph G, Rath P, Chia W (2001) A requirement for Notch in the genesis of a subset of glial cells in the Drosophila embryonic central nervous system which arise through asymmetric divisions. Development 128:1457–1466

    PubMed  CAS  Google Scholar 

  • Valverde F, Santacana M, Heredia M. (1992) Formation of an olfactory glomerulus: morphological aspects of development and organization. Neuroscience 49:255–275

    Article  PubMed  CAS  Google Scholar 

  • Wu HH, Ivkovic S, Murray RC, Jaramillo S, Lyons KM, Johnson JE, Calof AL (2003) Autoregulation of neurogenesis by GDF11. Neuron 37:197–207

    Article  PubMed  CAS  Google Scholar 

  • Yoon K, Gaiano N (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 6:709–715

    Article  Google Scholar 

  • Yoshihara S, Omichi K, Yanazawa M, Kitamura K, Yoshihara Y (2005) Arx homeobox gene is essential for development of mouse olfactory system. Development 132:751–762

    Article  PubMed  CAS  Google Scholar 

  • Yun K, Fischman S, Johnson J, Hrabe de Angelis M, Weinmaster G, Rubenstein JL (2002) Modulation of the notch signaling by Mash1 and Dlx1/2 regulates sequential specification and differentiation of progenitor cell types in the subcortical telencephalon. Development 129:5029–5040

    PubMed  CAS  Google Scholar 

  • Zhang N, Gridley T (1998) Defects in somite formation in lunatic fringe-deficient mice. Nature 394:374–377

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Andre Goffinet for providing CXCR4 cDNAs. This work was supported by National Institute of Health grants DC00953 to G.A.S. and DC06496 to T.R.H., and NS036437 to T.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald A. Schwarting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarting, G.A., Gridley, T. & Henion, T.R. Notch1 expression and ligand interactions in progenitor cells of the mouse olfactory epithelium. J Mol Hist 38, 543–553 (2007). https://doi.org/10.1007/s10735-007-9110-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-007-9110-9

Keywords

Navigation