Skip to main content

Advertisement

Log in

Genotyping of phenotypically defined cells in neoplasia: enhanced immunoFISH via tyramide signal amplification (TSA) segregates immunophenotypically—defined cell populations for gated genotyping

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Molecular morphologic tools exist for simultaneously visualizing immunophenotype and genotype of tumors, but are frequently hampered by a delicate balance between removing sufficient amount of the protein blocking full access of the probe to hybridize to target nucleic acids while still preserving sufficient target antigen for immunophenotyping. The result is often suboptimal, with either insufficiently visualized gene deletions and amplifications due to masking protein, or overdigestion of the protein target. Our purpose was to design and validate a gated genotyping assay that enables optimal and concomitant detection of both gene and protein. Using the proliferating endothelial cell compartment within gliomas organized in a tissue microarray (TMA), we tested the hypothesis that tyramide signal amplification (TSA) with deposition of a fluorochrome could be used during immunophenotyping, permitting sufficient protein digestion while insuring probe accessibility to nucleic acid target. The method was successfully validated using a TMA containing 38 glioma cases previously genotyped for EGFR amplification. CD31 positive endothelial cells were segregated via TSA-based Alexa-Fluor 647 immunofluorescence for analysis of EGFR amplification of the gliomas organized in the TMA. Enhanced immunoFISH (TSA) successfully segregates immunophenotypically—defined cell populations for gated genotyping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acar H, Kaynak M, Yakut T, Ucar F, Egeli U (2002) Determination of allelic deletion of multiple endocrine neoplasm type 1 (MEN1) gene in acute myeloid leukemia (AML) by application of FISH-TSA technique. Teratog Carcinog Mutagen 22:369–375

    Article  PubMed  CAS  Google Scholar 

  • Bobrow MN, Harris TD, Shaughnessy KJ, Litt GJ (1989) Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J Immunol Methods 125:279–285

    Article  PubMed  CAS  Google Scholar 

  • Breininger JF, Baskin DG (2000) Fluorescence in situ hybridization of scarce leptin receptor mRNA using the enzyme-labeled fluorescent substrate method and tyramide signal amplification. J Histochem Cytochem 48:1593–1599

    PubMed  CAS  Google Scholar 

  • Capodieci P, Donovan M, Buchinsky H, Jeffers Y, Cordon-Cardo C, Gerald W, Edelson J, Shenoy SM, Singer RH (2005) Gene expression profiling in single cells within tissue. Nat Methods 2:663–665

    Article  PubMed  CAS  Google Scholar 

  • Davies FE, Rawstron AC, Pratt G, O’Connor S, Su’ut L, Blythe D, Fenton J, Claydon D, Child JA, Jack AS, Morgan GJ (1999) FICTION-TSA analysis of the B-cell compartment in myeloma shows no significant expansion of myeloma precursor cells. Br J Haematol 106:40–46

    Article  PubMed  CAS  Google Scholar 

  • Evans MF, Aliesky HA, Cooper K (2003) Optimization of biotinyl-tyramide-based in situ hybridization for sensitive background-free applications on formalin-fixed, paraffin-embedded tissue specimens. BMC Clin Pathol 3:2

    Article  PubMed  Google Scholar 

  • Hida K, Hida Y, Amin DN, Flint AF, Panigrahy D, Morton CC, Klagsbrun M (2004) Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res 64:8249–8255

    Article  PubMed  CAS  Google Scholar 

  • Kerstens HM, Poddighe PJ, Hanselaar AG (1995) A novel in situ hybridization signal amplification method based on the deposition of biotinylated tyramine. J Histochem Cytochem 43:347–352

    PubMed  CAS  Google Scholar 

  • Komminoth P, Werner M (1997) Target and signal amplification: approaches to increase the sensitivity of in situ hybridization. Histochem Cell Biol 108:325–333

    Article  PubMed  CAS  Google Scholar 

  • Lottner C, Schwarz S, Diermeier S, Hartmann A, Knuechel R, Hofstaedter F, Brockhoff G (2005) Simultaneous detection of HER2/neu gene amplification and protein overexpression in paraffin-embedded breast cancer. J Pathol 205:577–584

    Google Scholar 

  • Mckay JA, Murray GI, Keith WN, Mcleod HL (1997) Amplification of fluorescent in situ hybridisation signals in formalin fixed paraffin wax embedded sections of colon tumour using biotinylated tyramide. Mol Pathol 50:322–325

    PubMed  CAS  Google Scholar 

  • Plummer TB, Sperry AC, Xu HS, Lloyd RV (1998) In situ hybridization detection of low copy nucleic acid sequences using catalyzed reporter deposition and its usefulness in clinical human papillomavirus typing. Diagn Mol Pathol 7:76–84

    Article  PubMed  CAS  Google Scholar 

  • Qian X, Bauer RA, Xu HS, Lloyd RV (2001) In situ hybridization detection of calcitonin mRNA in routinely fixed, paraffin-embedded tissue sections: a comparison of different types of probes combined with tyramide signal amplification. Appl Immunohistochem Mol Morphol 9:61–69

    Article  PubMed  CAS  Google Scholar 

  • Qian X, Lloyd RV (2003) Recent developments in signal amplification methods for in situ hybridization. Diagn Mol Pathol 12:1–13

    Article  PubMed  CAS  Google Scholar 

  • Samama B, Plas-Roser S, Schaeffer C, Chateau D, Fabre M, Boehm N (2002) HPV DNA detection by in situ hybridization with catalyzed signal amplification on thin-layer cervical smears. J Histochem Cytochem 50:1417–1420

    PubMed  CAS  Google Scholar 

  • Sano T, Hikino T, Niwa Y, Kashiwabara K, Oyama T, Fukuda T, Nakajima T (1998) In situ hybridization with biotinylated tyramide amplification: detection of human papillomavirus DNA in cervical neoplastic lesions. Mod Pathol 11:19–23

    PubMed  CAS  Google Scholar 

  • Schriml LM, Padilla-Nash HM, Coleman A, Moen P, Nash WG, Menninger J, Jones G, Ried T, Dean M (1999) Tyramide signal amplification (TSA)-FISH applied to mapping PCR-labeled probes less than 1 kb in size. Biotechniques 27:608–613

    PubMed  CAS  Google Scholar 

  • Skacel M, Hicks D, Tubbs R (2003) Chapter 2.3: tissue microarrays and their modifications in high-throughput analysis of clinical specimens. In: Hayat MA (ed) Immunohistochemistry and in situ hybridization of human carcinomas; molecular genetics; lung and breast carcinomas. Humana Press, Union, NJ, USA

    Google Scholar 

  • Speel EJ, Saremaslani P, Roth J, Hopman AH, Komminoth P (1998) Improved mRNA in situ hybridization on formaldehyde-fixed and paraffin-embedded tissue using signal amplification with different haptenized tyramides. Histochem Cell Biol 110:571–577

    Article  PubMed  CAS  Google Scholar 

  • Streubel B, Chott A, Huber D, Exner M, Jager U, Wagner O, Schwarzinger I (2004) Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 351:250–259

    Article  PubMed  CAS  Google Scholar 

  • Szollosi Z, Egervari K, Nemes Z, Kaczur V (2005) Re: Lottner et al. simultaneous detection of HER2/neu gene amplification and protein overexpression in paraffin-embedded breast cancer. J Pathol 205:577–584; J Pathol 207:119–120

    Google Scholar 

  • Tata AM (2001) An in situ hybridization protocol to detect rare mRNA expressed in neural tissue using biotin-labelled oligonucleotide probes. Brain Res Brain Res Protoc 6:178–184

    Article  PubMed  CAS  Google Scholar 

  • Temple G, Sales M, Kernohan N, Scott F, Meiklejohn D, Pratt N (2004) Application of combined immunofluorescence and fluorescence in situ hybridization on paraffin-embedded sections to characterize T-cell lymphoma with EBV-infected B-cell blasts. Genes Chromosomes Cancer 41:405–409

    Google Scholar 

  • True LD, Swisshelm K (2004) Endothelial cells in B-cell lymphomas. N Engl J Med 351:2019; author reply 2019

  • Tubbs R, Al E (2000) Concomitant oncoprotein detection with fluorescence in situ hybridization (CODFISH): a fluorescence-based assay enabling simultaneous visualization of gene amplification and encoded protein expression. J Mol Diagn 2:78–83

    PubMed  CAS  Google Scholar 

  • Tubbs R, Pettay J, Skacel M, Powell R, Stoler M, Roche P, Hainfeld J (2002a) Gold-facilitated in situ hybridization: a bright-field autometallographic alternative to fluorescence in situ hybridization for detection of Her−2/neu gene amplification. Am J Pathol 160:1589–1595

    CAS  Google Scholar 

  • Tubbs R, Skacel M, Pettay J, Powell R, Myles J, Hicks D, Sreenan J, Roche P, Stoler MH, Hainfeld J (2002b) Interobserver interpretative reproducibility of GOLDFISH, a first generation gold-facilitated autometallographic bright field in situ hybridization assay for HER−2/neu amplification in invasive mammary carcinoma. Am J Surg Pathol 26:908–913

    Article  Google Scholar 

  • Tubbs R, Swain E, Pettay J, Hicks D (2006) An approach to the validation of novel molecular markers of breast cancer via TMA-based FISH scanning. J Mol Histol doi: 10.1007/s10735-006-9076-z

  • van de Corput MP, Dirks RW, van Gijlswijk RP, van Binnendijk E, Hattinger CM, de Paus RA, Landegent JE, Raap AK (1998a) Sensitive mRNA detection by fluorescence in situ hybridization using horseradish peroxidase-labeled oligodeoxynucleotides and tyramide signal amplification. J Histochem Cytochem 46:1249–1259

    Google Scholar 

  • van de Corput MP, Dirks RW, van Gijlswijk RP, van de Rijke FM, Raap AK (1998b) Fluorescence in situ hybridization using horseradish peroxidase-labeled oligodeoxynucleotides and tyramide signal amplification for sensitive DNA and mRNA detection. Histochem Cell Biol 110:431–437

    Article  Google Scholar 

  • van Gijlswijk RP, van de Corput MP, Bezrookove V, Wiegant J, Tanke HJ, Raap AK (2000) Synthesis and purification of horseradish peroxidase-labeled oligonucleotides for tyramide-based fluorescence in situ hybridization. Histochem Cell Biol 113:175–180

    Article  PubMed  Google Scholar 

  • Wagner M, Schmid M, Juretschko S, Trebesius KH, Bubert A, Goebel W, Schleifer KH (1998) In situ detection of a virulence factor mRNA and 16S rRNA in Listeria monocytogenes. FEMS Microbiol Lett 160:159–168

    Article  PubMed  CAS  Google Scholar 

  • Wiedorn KH, Kuhl H, Galle J, Caselitz J, Vollmer E (1999) Comparison of in-situ hybridization, direct and indirect in-situ PCR as well as tyramide signal amplification for the detection of HPV. Histochem Cell Biol 111:89–95

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Wanner IB, Roper SD, Chaudhari N (1999) An optimized method for in situ hybridization with signal amplification that allows the detection of rare mRNAs. J Histochem Cytochem 47:431–446

    PubMed  CAS  Google Scholar 

  • Zaidi AU, Enomoto H, Milbrandt J, Roth KA (2000) Dual fluorescent in situ hybridization and immunohistochemical detection with tyramide signal amplification. J Histochem Cytochem 48:1369–1375

    PubMed  CAS  Google Scholar 

  • Zehbe I, Hacker GW, Su H, Hauser-Kronberger C, Hainfeld JF, Tubbs R (1997) Sensitive in situ hybridization with catalyzed reporter deposition, streptavidin-Nanogold, and silver acetate autometallography: detection of single-copy human papillomavirus. Am J Pathol 150:1553–1561

    PubMed  CAS  Google Scholar 

  • Zhang Z, Kitching P (2000) A sensitive method for the detection of foot and mouth disease virus by in situ hybridisation using biotin-labelled oligodeoxynucleotides and tyramide signal amplification. J Virol Methods 88:187–192

    Article  PubMed  CAS  Google Scholar 

  • Zhao WL, Mourah S, Mounier N, Leboeuf C, Daneshpouy ME, Legres L, Meignin V, Oksenhendler E, Maignin CL, Calvo F, Briere J, Gisselbrecht C, Janin A (2004) Vascular endothelial growth factor-A is expressed both on lymphoma cells and endothelial cells in angioimmunoblastic T-cell lymphoma and related to lymphoma progression. Lab Invest 84:1512–1519

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond R. Tubbs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tubbs, R.R., Das, K., Cook, J.R. et al. Genotyping of phenotypically defined cells in neoplasia: enhanced immunoFISH via tyramide signal amplification (TSA) segregates immunophenotypically—defined cell populations for gated genotyping. J Mol Hist 38, 129–134 (2007). https://doi.org/10.1007/s10735-006-9074-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-006-9074-1

Keywords

Navigation