Skip to main content

Advertisement

Log in

New tricks for old drugs: the anticarcinogenic potential of DNA repair inhibitors

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Defective or abortive repair of DNA lesions has been associated with carcinogenesis. Therefore it is imperative for a cell to accurately repair its DNA after damage if it is to return to a normal cellular phenotype. In certain circumstances, if DNA damage cannot be repaired completely and with high fidelity, it is more advantageous for an organism to have some of its more severely damaged cells die rather than survive as neoplastic transformants. A number of DNA repair inhibitors have the potential to act as anticarcinogenic compounds. These drugs are capable of modulating DNA repair, thus promoting cell death rather than repair of potentially carcinogenic DNA damage mediated by error-prone DNA repair processes. In theory, exposure to a DNA repair inhibitor during, or immediately after, carcinogenic exposure should decrease or prevent tumorigenesis. However, the ability of DNA repair inhibitors to prevent cancer development is difficult to interpret depending upon the system used and the type of genotoxic stress. Inhibitors may act on multiple aspects of DNA repair as well as the cellular signaling pathways activated in response to the initial damage. In this review, we summarize basic DNA repair mechanisms and explore the effects of a number of DNA repair inhibitors that not only potentiate DNA-damaging agents but also decrease carcinogenicity. In particular, we focus on a novel anti-tumor agent, β-lapachone, and its potential to block transformation by modulating poly(ADP-ribose) polymerase-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts MM, Tymianski M (2004) Molecular mechanisms underlying specificity of excitotoxic signaling in neurons. Curr Mol Med 4:137–147

    PubMed  CAS  Google Scholar 

  • Akerman KE (1978) Changes in membrane potential during calcium ion influx and efflux across the mitochondrial membrane. Biochim Biophys Acta 502:359–366

    PubMed  CAS  Google Scholar 

  • Allen C, Halbrook J, Nickoloff JA (2003) Interactive competition between homologous recombination and non-homologous end joining. Mol Cancer Res 1:913–920

    PubMed  CAS  Google Scholar 

  • Althaus FR, Hilz H, Shall S (1985) ADP-ribosylation of proteins. Springer, New York

    Google Scholar 

  • Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. Bioessays 26:882–893

    PubMed  CAS  Google Scholar 

  • Ausserer WA, Bourrat-Floeck B, Green CJ, Laderoute KR, Sutherland RM (1994) Regulation of c-jun expression during hypoxic and low-glucose stress. Mol Cell Biol 14:5032–5042

    PubMed  CAS  Google Scholar 

  • Bakkenist CJ, Kastan MB (2004) Initiating cellular stress responses. Cell 118:9–17

    PubMed  CAS  Google Scholar 

  • Beall HD, Murphy AM, Siegel D, Hargreaves RH, Butler J, Ross D (1995) Nicotinamide adenine dinucleotide (phosphate): quinone oxidoreductase (DT-diaphorase) as a target for bioreductive antitumor quinones: quinone cytotoxicity and selectivity in human lung and breast cancer cell lines. Mol Pharmacol 48:499–504

    PubMed  CAS  Google Scholar 

  • Belinsky M, Jaiswal AK (1993) NAD(P)H:quinone oxidoreductase1 (DT-diaphorase) expression in normal and tumor tissues. Cancer Metastasis Rev 12:103–117

    PubMed  CAS  Google Scholar 

  • Beneke S, Diefenbach J, Burkle A (2004) Poly(ADP-ribosyl)ation inhibitors: promising drug candidates for a wide variety of pathophysiologic conditions. Int J Cancer 111:813–818

    PubMed  CAS  Google Scholar 

  • Berger NA (1985) Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res 101:4–15

    PubMed  CAS  Google Scholar 

  • Bieche I, de Murcia G, Lidereau R (1996) Poly(ADP-ribose) polymerase gene expression status and genomic instability in human breast cancer. Clin Cancer Res 2:1163–1167

    PubMed  CAS  Google Scholar 

  • Bobola MS, Silber JR, Ellenbogen RG, Geyer JR, Blank A, Goff RD (2005) O6-methylguanine-DNA methyltransferase, O6-benzylguanine, and resistance to clinical alkylators in pediatric primary brain tumor cell lines. Clin Cancer Res 11:2747–2755

    PubMed  CAS  Google Scholar 

  • Bolderson E, Scorah J, Helleday T, Smythe C, Meuth M (2004) ATM is required for the cellular response to thymidine induced replication fork stress. Hum Mol Genet 13:2937–2945

    PubMed  CAS  Google Scholar 

  • Boorstein RJ, Pardee AB (1983) Coordinate inhibition of DNA synthesis and thymidylate synthase activity following DNA damage and repair. Biochem Biophys Res Commun 117:30–36

    PubMed  CAS  Google Scholar 

  • Boorstein RJ, Pardee AB (1984) Beta-lapachone greatly enhances MMS lethality to human fibroblasts. Biochem Biophys Res Commun 118:828–834

    PubMed  CAS  Google Scholar 

  • Boothman DA, Pardee AB (1989) Inhibition of radiation-induced neoplastic transformation by beta-lapachone. Proc Natl Acad Sci USA 86:4963–4967

    PubMed  CAS  Google Scholar 

  • Boothman DA, Greer S, Pardee AB (1987) Potentiation of halogenated pyrimidine radiosensitizers in human carcinoma cells by beta-lapachone (3,4-dihydro-2,2-dimethyl-2H-naphtho[1,2-b]pyran- 5,6-dione), a novel DNA repair inhibitor. Cancer Res 47:5361–5366

    PubMed  CAS  Google Scholar 

  • Boothman DA, Schlegel R, Pardee AB (1988) Anticarcinogenic potential of DNA-repair modulators. Mutat Res 202:393–411

    PubMed  CAS  Google Scholar 

  • Boothman DA, Trask DK, Pardee AB (1989) Inhibition of potentially lethal DNA damage repair in human tumor cells by beta-lapachone, an activator of topoisomerase I. Cancer Res 49:605–612

    PubMed  CAS  Google Scholar 

  • Borek C, Cleaver JE (1986) Antagonistic action of a tumor promoter and a poly(adenosine diphosphoribose) synthesis inhibitor in radiation-induced transformation in vitro. Biochem Biophys Res Commun 134:1334–1341

    PubMed  CAS  Google Scholar 

  • Borek C, Morgan WF, Ong A, Cleaver JE (1984) Inhibition of␣malignant transformation in vitro by inhibitors of poly (ADP-ribose) synthesis. Proc Natl Acad Sci USA 81:243–247

    PubMed  CAS  Google Scholar 

  • Bowman KJ, White A, Golding BT, Griffin RJ, Curtin NJ (1998) Potentiation of anti-cancer agent cytotoxicity by the potent poly(ADP-ribose) polymerase inhibitors NU1025 and NU1064. Br J Cancer 78:1269–1277

    PubMed  CAS  Google Scholar 

  • Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917

    PubMed  CAS  Google Scholar 

  • Budd SL, Tenneti L, Lishnak T, Lipton SA (2000) Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. Proc Natl Acad Sci USA 97:6161–6166

    PubMed  CAS  Google Scholar 

  • Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    PubMed  CAS  Google Scholar 

  • Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S, Durkacz BW, Hostomsky Z, Kumpf RA, Kyle S, Li J, Maegley K, Newell DR, Notarianni E, Stratford IJ, Skalitzky D, Thomas HD, Wang LZ, Webber SE, Williams KJ, Curtin NJ (2004) Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst 96:56–67

    Article  PubMed  CAS  Google Scholar 

  • Cepeda V, Fuertes M, Castilla J, Alonso C, Quevedo C, Soto M, Perez J (2006) Poly(ADP-Ribose) polymerase-1 (PARP-1) inhibitors in cancer chemotherapy. Recent Patents Anti-Cancer Drug Discov 1:39–53

    PubMed  CAS  Google Scholar 

  • Chambon P, Weill JD, Mandel P (1963) Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 11:39–43

    PubMed  CAS  Google Scholar 

  • Choi BT, Cheong J, Choi YH (2003a) Beta-Lapachone-induced apoptosis is associated with activation of caspase-3 and inactivation of NF-kappaB in human colon cancer HCT-116 cells. Anticancer Drugs 14:845–850

    CAS  Google Scholar 

  • Choi YH, Kang HS, Yoo MA (2003b) Suppression of human prostate cancer cell growth by beta-lapachone via down-regulation of pRB phosphorylation and induction of Cdk inhibitor p21(WAF1/CIP1). J Biochem Mol Biol 36:223–229

    CAS  Google Scholar 

  • Collis SJ, DeWeese TL, Jeggo PA, Parker AR (2005) The life and death of DNA-PK. Oncogene 24:949–961

    PubMed  CAS  Google Scholar 

  • Convery E, Shin EK, Ding Q, Wang W, Douglas P, Davis LS, Nickoloff JA, Lees-Miller SP, Meek K (2005) Inhibition of homologous recombination by variants of the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs). Proc Natl Acad Sci USA 102:1345–1350

    PubMed  CAS  Google Scholar 

  • Davidovic L, Vodenicharov M, Affar EB, Poirier GG (2001) Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp Cell Res 268:7–13

    PubMed  CAS  Google Scholar 

  • de Laat WL, Jaspers NG, Hoeijmakers JH (1999) Molecular mechanism of nucleotide excision repair. Genes Dev 13:768–785

    PubMed  Google Scholar 

  • de Murcia G, Menissier de Murcia J (1994) Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci 19:172–176

    PubMed  Google Scholar 

  • de Murcia G, Schreiber V, Molinete M, Saulier B, Poch O, Masson M, Niedergang C, Menissier de Murcia J (1994) Structure and function of poly(ADP-ribose) polymerase. Mol Cell Biochem 138:15–24

    PubMed  Google Scholar 

  • de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P, de Murcia G (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 94:7303–7307

    PubMed  Google Scholar 

  • Delaney CA, Wang LZ, Kyle S, White AW, Calvert AH, Curtin NJ, Durkacz BW, Hostomsky Z, Newell DR (2000) Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly(adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin Cancer Res 6:2860–2867

    PubMed  CAS  Google Scholar 

  • Docampo R, Lopes JN, Cruz FS, Souza W (1977) Trypanosoma cruzi: ultrastructural and metabolic alterations of epimastigotes by beta-lapachone. Exp Parasitol 42:142–149

    PubMed  CAS  Google Scholar 

  • Docampo R, Cruz FS, Boveris A, Muniz RP, Esquivel DM (1979) Beta-Lapachone enhancement of lipid peroxidation and superoxide anion and hydrogen peroxide formation by sarcoma 180 ascites tumor cells. Biochem Pharmacol 28:723–728

    PubMed  CAS  Google Scholar 

  • Dolan ME, Moschel RC, Pegg AE (1990) Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc Natl Acad Sci USA 87:5368–5372

    PubMed  CAS  Google Scholar 

  • Duriez PJ, Shah GM (1997) Cleavage of poly(ADP-ribose) polymerase: a sensitive parameter to study cell death. Biochem Cell Biol 75:337–349

    PubMed  CAS  Google Scholar 

  • El-Khamisy SF, Masutani M, Suzuki H, Caldecott KW (2003) A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res 31:5526–5533

    PubMed  CAS  Google Scholar 

  • Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1089–1095

    PubMed  CAS  Google Scholar 

  • Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA (1997) Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab 17:1143–1151

    PubMed  CAS  Google Scholar 

  • Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38:713–721

    PubMed  CAS  Google Scholar 

  • Falck J, Coates J, Jackson SP (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434:605–611

    PubMed  CAS  Google Scholar 

  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004) H2AX: the histone guardian of the genome. DNA Repair (Amst) 3:959–967

    CAS  Google Scholar 

  • Fieser L, Berliner E, Bondhus F, Chang F, Dauben W, Ettlinger M, Fawaz G (1948) Napthoquinone antimalarials. I. General survey. J Am Chem Soc 70:3151–3237

    CAS  PubMed  Google Scholar 

  • Flohr C, Burkle A, Radicella JP, Epe B (2003) Poly(ADP-ribosyl)ation accelerates DNA repair in a pathway dependent on Cockayne syndrome B protein. Nucleic Acids Res 31:5332–5337

    PubMed  CAS  Google Scholar 

  • Fortini P, Calcagnile A, Vrieling H, van Zeeland AA, Bignami M, Dogliotti E (1993) Mutagenic processing of ethylation damage in mammalian cells: the use of methoxyamine to study apurinic/apyrimidinic site-induced mutagenesis. Cancer Res 53:1149–1155

    PubMed  CAS  Google Scholar 

  • Gerson SL (2004) MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 4:296–307

    PubMed  CAS  Google Scholar 

  • Guo Z, Kumagai A, Wang SX, Dunphy WG (2000) Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes Dev 14:2745–2756

    PubMed  CAS  Google Scholar 

  • Haber JE (2000) Partners and pathways repairing a double-strand break. Trends Genet 16:259–264

    PubMed  CAS  Google Scholar 

  • Haince JF, Rouleau M, Hendzel MJ, Masson JY, Poirier GG (2005) Targeting poly(ADP-ribosyl)ation: a promising approach in cancer therapy. Trends Mol Med 11:456–463

    PubMed  CAS  Google Scholar 

  • Hartley KO, Gell D, Smith GC, Zhang H, Divecha N, Connelly MA, Admon A, Lees-Miller SP, Anderson CW, Jackson SP (1995) DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82:849–856

    PubMed  CAS  Google Scholar 

  • Helleday T, Bryant HE, Schultz N (2005) Poly(ADP-ribose) polymerase (PARP-1) in homologous recombination and as a target for cancer therapy. Cell Cycle 4:1176–1178

    PubMed  CAS  Google Scholar 

  • Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI, Reaper PM, Jackson SP, Curtin NJ, Smith GC (2004) Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64:9152–9159

    PubMed  CAS  Google Scholar 

  • Homburg S, Visochek L, Moran N, Dantzer F, Priel E, Asculai E, Schwartz D, Rotter V, Dekel N, Cohen-Armon M (2000) A fast signal-induced activation of Poly(ADP-ribose) polymerase: a novel downstream target of phospholipase c. J Cell Biol 150:293–307

    PubMed  CAS  Google Scholar 

  • Hooker S (1892) The constitution of lapachic acid (lapachol) and its derivatives. J Chem Soc 61:611–650

    CAS  Google Scholar 

  • Hooker S (1896) The constitution of lapachol and its derivatives. Part III. The structure of the amylene chain. J Chem Soc 69:1355–1381

    CAS  Google Scholar 

  • Hu HY, Horton JK, Gryk MR, Prasad R, Naron JM, Sun DA, Hecht SM, Wilson SH, Mullen GP (2004) Identification of small molecule synthetic inhibitors of DNA polymerase beta by NMR chemical shift mapping. J Biol Chem 279:39736–39744

    PubMed  CAS  Google Scholar 

  • Ismail IH, Martensson S, Moshinsky D, Rice A, Tang C, Howlett A, McMahon G, Hammarsten O (2004) SU11752 inhibits the DNA-dependent protein kinase and DNA double-strand break repair resulting in ionizing radiation sensitization. Oncogene 23:873–882

    PubMed  CAS  Google Scholar 

  • Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696

    PubMed  CAS  Google Scholar 

  • Karran P (2000) DNA double strand break repair in mammalian cells. Curr Opin Genet Dev 10:144–150

    PubMed  CAS  Google Scholar 

  • Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432:316–323

    PubMed  CAS  Google Scholar 

  • Kazumi T, Yoshino G, Baba S (1980) Pancreatic islet cell tumors found in rats given alloxan and nicotinamide. Endocrinol Jpn 27:387–393

    PubMed  CAS  Google Scholar 

  • Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254

    PubMed  CAS  Google Scholar 

  • Kim SH, Lee CS (1992) The effect of caffeine on diethylnitrosamine-initiated hepatic altered foci in a mid-term induction system. In Vivo 6:223–226

    PubMed  CAS  Google Scholar 

  • Kun E, Kirsten E, Milo GE, Kurian P, Kumari HL (1983) Cell cycle-dependent intervention by benzamide of carcinogen-induced neoplastic transformation and in vitro poly(ADP-ribosyl)ation of nuclear proteins in human fibroblasts. Proc Natl Acad Sci USA 80:7219–7223

    PubMed  CAS  Google Scholar 

  • Lai CC, Liu TJ, Ho LK, Don MJ, Chau YP (1998) Beta-Lapachone induced cell death in human hepatoma (HepA2) cells. Histol Histopathol 13:89–97

    PubMed  CAS  Google Scholar 

  • Leppard JB, Dong Z, Mackey ZB, Tomkinson AE (2003) Physical and functional interaction between DNA ligase␣IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair. Mol Cell Biol 23:5919–5927

    PubMed  CAS  Google Scholar 

  • Lieber MR, Ma Y, Pannicke U, Schwarz K (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4:712–720

    PubMed  CAS  Google Scholar 

  • Lindahl T, Wood RD (1999) Quality control by DNA repair. Science 286:1897–1905

    PubMed  CAS  Google Scholar 

  • Liu L, Gerson SL (2004) Therapeutic impact of methoxyamine: blocking repair of abasic sites in the base excision repair pathway. Curr Opin Investig Drugs 5:623–627

    PubMed  CAS  Google Scholar 

  • Lu HR, Zhu H, Huang M, Chen Y, Cai YJ, Miao ZH, Zhang JS, Ding J (2005) Reactive oxygen species elicit apoptosis by concurrently disrupting topoisomerase II and DNA-dependent protein kinase. Mol Pharmacol 68:983–994

    PubMed  CAS  Google Scholar 

  • Luo M, Xu Y, He Y, Reed A, Handa H, Kelley M (2004) Inhibition of the human apurinic/apyrimidinic endonuclease DNA base excision repair enzyme/redox factor (APE1/Ref-1) using small molecule redox and repair inhibitors; therapeutic implications. American Association for Cancer Research meeting Abstract No. 3042

  • Madhusudan S, Smart F, Shrimpton P, Parsons JL, Gardiner L, Houlbrook S, Talbot DC, Hammonds T, Freemont PA, Sternberg MJ, Dianov GL, Hickson ID (2005) Isolation of a small molecule inhibitor of DNA base excision repair. Nucleic Acids Res 33:4711–4724

    PubMed  CAS  Google Scholar 

  • Marin A, Lopez de Cerain A, Hamilton E, Lewis AD, Martinez-Penuela JM, Idoate MA, Bello J (1997) DT-diaphorase and cytochrome B5 reductase in human lung and breast tumours. Br J Cancer 76:923–929

    PubMed  CAS  Google Scholar 

  • Masutani M, Nozaki T, Nakamoto K, Nakagama H, Suzuki H, Kusuoka O, Tsutsumi M, Sugimura T (2000) The response of Parp knockout mice against DNA damaging agents. Mutat Res 462:159–166

    PubMed  CAS  Google Scholar 

  • Miao ZH, Tang T, Zhang YX, Zhang JS, Ding J (2003) Cytotoxicity, apoptosis induction and downregulation of MDR-1 expression by the anti-topoisomerase II agent, salvicine, in multidrug-resistant tumor cells. Int J Cancer 106:108–115

    PubMed  CAS  Google Scholar 

  • Miao ZH, Tong LJ, Zhang JS, Han JX, Ding J (2004) Characterization of salvicine-resistant lung adenocarcinoma A549/SAL cell line. Int J Cancer 110:627–632

    PubMed  CAS  Google Scholar 

  • MIwa M, Ishikawa T, Kondo T, Takayama S, Sugimara T (1985) ADP-ribosylation of proteins. Althaus RF (ed) pp 480–483

  • Mochan TA, Venere M, DiTullio RA Jr, Halazonetis TD (2004) 53BP1, an activator of ATM in response to DNA damage. DNA Repair (Amst) 3:945–952

    CAS  Google Scholar 

  • Muller JM, Krauss B, Kaltschmidt C, Baeuerle PA, Rupec RA (1997) Hypoxia induces c-fos transcription via a mitogen-activated protein kinase-dependent pathway. J Biol Chem 272:23435–23439

    PubMed  CAS  Google Scholar 

  • Nicholson DW, Thornberry NA (2003) Apoptosis. Life and death decisions. Science 299:214–215

    PubMed  CAS  Google Scholar 

  • Orrenius S, McCabe MJ Jr, Nicotera P (1992) Ca(2+)-dependent mechanisms of cytotoxicity and programmed cell death. Toxicol Lett 64–65 Spec No:357–364

  • Pan SS, Han Y, Farabaugh P, Xia H (2002) Implication of alternative splicing for expression of a variant NAD(P)H:quinone oxidoreductase-1 with a single nucleotide polymorphism at 465C > T. Pharmacogenetics 12:479–488

    PubMed  CAS  Google Scholar 

  • Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895

    PubMed  CAS  Google Scholar 

  • Petermann E, Keil C, Oei SL (2005) Importance of poly(ADP-ribose) polymerases in the regulation of DNA-dependent processes. Cell Mol Life Sci 62:731–738

    PubMed  CAS  Google Scholar 

  • Petrini JH, Stracker TH (2003) The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol 13:458–462

    PubMed  CAS  Google Scholar 

  • Phillips RM, Basu S, Brown JE, Flannigan GM, Loadman PM, Martin SW, Naylor B, Puri R, Shah T (2004) Detection of (NAD(P)H:Quinone oxidoreductase-1, EC 1.6.99.2) 609C– > T and 465C– > T polymorphisms in formalin-fixed, paraffin-embedded human tumour tissue using PCR-RFLP. Int J Oncol 24:1005–1010

    PubMed  CAS  Google Scholar 

  • Pieper AA, Walles T, Wei G, Clements EE, Verma A, Snyder SH, Zweier JL (2000) Myocardial postischemic injury is reduced by polyADPripose polymerase-1 gene disruption. Mol Med 6:271–282

    PubMed  CAS  Google Scholar 

  • Pink JJ, Planchon SM, Tagliarino C, Varnes ME, Siegel D, Boothman DA (2000a) NAD(P)H:Quinone oxidoreductase activity is the principal determinant of beta-lapachone cytotoxicity. J Biol Chem 275:5416–5424

    CAS  Google Scholar 

  • Pink JJ, Wuerzberger-Davis S, Tagliarino C, Planchon SM, Yang X, Froelich CJ, Boothman DA (2000b) Activation of a cysteine protease in MCF-7 and T47D breast cancer cells during beta-lapachone-mediated apoptosis. Exp Cell Res 255:144–155

    CAS  Google Scholar 

  • Planchon SM, Wuerzberger S, Frydman B, Witiak DT, Hutson P, Church DR, Wilding G, Boothman DA (1995) Beta-lapachone-mediated apoptosis in human promyelocytic leukemia (HL-60) and human prostate cancer cells: a p53-independent response. Cancer Res 55:3706–3711

    PubMed  CAS  Google Scholar 

  • Planchon SM, Pink JJ, Tagliarino C, Bornmann WG, Varnes ME, Boothman DA (2001) Beta-Lapachone-induced apoptosis in human prostate cancer cells: involvement of NQO1/xip3. Exp Cell Res 267:95–106

    PubMed  CAS  Google Scholar 

  • Prasad SC, Thraves PJ, Bhatia KG, Smulson ME, Dritschilo A (1990) Enhanced poly(adenosine diphosphate ribose) polymerase activity and gene expression in Ewing's sarcoma cells. Cancer Res 50:38–43

    PubMed  CAS  Google Scholar 

  • Prudhomme M (2006) Novel checkpoint 1 inhibitors. Recent Patents Anti-Cancer Drug Discov 1:55–68

    CAS  Google Scholar 

  • Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ, Reis C, Dahm K, Fricke A, Krempler A, Parker AR, Jackson SP, Gennery A, Jeggo PA, Lobrich M (2004) A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 16:715–724

    PubMed  CAS  Google Scholar 

  • Ross D, Siegel D (2004) NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol 382:115–144

    Article  PubMed  CAS  Google Scholar 

  • Ross D, Kepa JK, Winski SL, Beall HD, Anwar A, Siegel D (2000) NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact 129:77–97

    PubMed  CAS  Google Scholar 

  • Rupec RA, Baeuerle PA (1995) The genomic response of tumor cells to hypoxia and reoxygenation. Differential activation of transcription factors AP-1 and NF-kappa B. Eur J Biochem 234:632–640

    PubMed  CAS  Google Scholar 

  • Sak A, Stueben G, Groneberg M, Bocker W, Stuschke M (2005) Targeting of Rad51-dependent homologous recombination: implications for the radiation sensitivity of human lung cancer cell lines. Br J Cancer 92:1089–1097

    PubMed  CAS  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    PubMed  CAS  Google Scholar 

  • Schaffner-Sabba K, Schmidt-Ruppin KH, Wehrli W, Schuerch AR, Wasley JW (1984) Beta-Lapachone: synthesis of derivatives and activities in tumor models. J Med Chem 27:990–994

    PubMed  CAS  Google Scholar 

  • Shinohara E, Halbrook J, Geng L, Xia F, Hallahan D (2004) Radiosensatiztion by the novel DNA-Dependent Protein kinase (DNA-PK) inhibitors, IC87102 and IC87361 in animal tumor models. American Association for Cancer Research (Abstract No. 1353)

  • Shinohara ET, Geng L, Tan J, Chen H, Shir Y, Edwards E, Halbrook J, Kesicki EA, Kashishian A, Hallahan DE (2005) DNA-dependent protein kinase is a molecular target for the development of noncytotoxic radiation-sensitizing drugs. Cancer Res 65:4987–4992

    PubMed  CAS  Google Scholar 

  • Smith GC, Jackson SP (1999) The DNA-dependent protein kinase. Genes Dev 13:916–934

    PubMed  CAS  Google Scholar 

  • Smulson ME, Pang D, Jung M, Dimtchev A, Chasovskikh S,␣Spoonde A, Simbulan-Rosenthal C, Rosenthal D, Yakovlev A, Dritschilo A (1998) Irreversible binding of poly(ADP)ribose polymerase cleavage product to DNA ends revealed by atomic force microscopy: possible role in apoptosis. Cancer Res 58:3495–3498

    PubMed  CAS  Google Scholar 

  • Southan GJ, Szabo C (2003) Poly(ADP-ribose) polymerase inhibitors. Curr Med Chem 10:321–340

    PubMed  CAS  Google Scholar 

  • Stiff T, O'Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64:2390–2396

    PubMed  CAS  Google Scholar 

  • Sturgeon CM, Knight ZA, Shokat KM, Roberge M (2006) Effect of combined DNA repair inhibition and G2 checkpoint inhibition on cell cycle progression after DNA damage. Mol Cancer Ther 5:885–892

    PubMed  CAS  Google Scholar 

  • Sugawara N, Ira G, Haber JE (2000) DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol Cell Biol 20:5300–5309

    PubMed  CAS  Google Scholar 

  • Susse S, Scholz CJ, Burkle A, Wiesmuller L (2004) Poly(ADP-ribose) polymerase (PARP-1) and p53 independently function in regulating double-strand break repair in primate cells. Nucleic Acids Res 32:669–680

    PubMed  Google Scholar 

  • Szabo C, Dawson VL (1998) Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 19:287–298

    PubMed  CAS  Google Scholar 

  • Tagliarino C, Pink JJ, Dubyak GR, Nieminen AL, Boothman DA (2001) Calcium is a key signaling molecule in beta-lapachone-mediated cell death. J Biol Chem 276:19150–19159

    PubMed  CAS  Google Scholar 

  • Tagliarino C, Pink JJ, Reinicke KE, Simmers SM, Wuerzberger-Davis SM, Boothman DA (2003) Mu-calpain activation in beta-lapachone-mediated apoptosis. Cancer Biol Ther 2:141–152

    PubMed  CAS  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    PubMed  CAS  Google Scholar 

  • Tornaletti S, Hanawalt PC (1999) Effect of DNA lesions on transcription elongation. Biochimie 81:139–146

    PubMed  CAS  Google Scholar 

  • Traver RD, Horikoshi T, Danenberg KD, Stadlbauer TH, Danenberg PV, Ross D, Gibson NW (1992) NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Res 52:797–802

    PubMed  CAS  Google Scholar 

  • Traver RD, Siegel D, Beall HD, Phillips RM, Gibson NW, Franklin WA, Ross D (1997) Characterization of a polymorphism in NAD(P)H: quinone oxidoreductase (DT-diaphorase). Br J Cancer 75:69–75

    PubMed  CAS  Google Scholar 

  • Trucco C, Oliver FJ, de Murcia G, Menissier de Murcia J (1998) DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res 26:2644–2649

    PubMed  CAS  Google Scholar 

  • van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2:196–206

    PubMed  Google Scholar 

  • Veuger SJ, Curtin NJ, Smith GC, Durkacz BW (2004) Effects of novel inhibitors of poly(ADP-ribose) polymerase-1 and the DNA-dependent protein kinase on enzyme activities and DNA repair. Oncogene 23:7322–7329

    PubMed  CAS  Google Scholar 

  • Virag L, Szabo C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429

    PubMed  CAS  Google Scholar 

  • Ward TH, Danson S, McGown AT, Ranson M, Coe NA, Jayson␣GC, Cummings J, Hargreaves RH, Butler J (2005) Preclinical evaluation of the pharmacodynamic properties of 2,5-diaziridinyl-3-hydroxymethyl-6-methyl-1,4-benzoquinone. Clin Cancer Res 11:2695–2701

    PubMed  CAS  Google Scholar 

  • Willmore E, de Caux S, Sunter NJ, Tilby MJ, Jackson GH, Austin CA, Durkacz BW (2004) A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood 103:4659–4665

    PubMed  CAS  Google Scholar 

  • Winski SL, Hargreaves RH, Butler J, Ross D (1998) A new screening system for NAD(P)H:quinone oxidoreductase (NQO1)-directed antitumor quinones: identification of a new aziridinylbenzoquinone, RH1, as a NQO1-directed antitumor agent. Clin Cancer Res 4:3083–3088

    PubMed  CAS  Google Scholar 

  • Winski SL, Swann E, Hargreaves RH, Dehn DL, Butler J, Moody CJ, Ross D (2001) Relationship between NAD(P)H:quinone oxidoreductase 1 (NQO1) levels in a series of stably transfected cell lines and susceptibility to antitumor quinones. Biochem Pharmacol 61:1509–1516

    PubMed  CAS  Google Scholar 

  • Woo HJ, Choi YH (2005) Growth inhibition of A549 human lung carcinoma cells by beta-lapachone through induction of apoptosis and inhibition of telomerase activity. Int J Oncol 26:1017–1023

    PubMed  CAS  Google Scholar 

  • Wood RD, Shivji MK (1997) Which DNA polymerases are used for DNA-repair in eukaryotes? Carcinogenesis 18:605–610

    PubMed  CAS  Google Scholar 

  • Wuerzberger SM, Pink JJ, Planchon SM, Byers KL, Bornmann WG, Boothman DA (1998) Induction of apoptosis in MCF-7:WS8 breast cancer cells by beta-lapachone. Cancer Res 58:1876–1885

    PubMed  CAS  Google Scholar 

  • Yaneva M, Li H, Marple T, Hasty P (2005) Non-homologous end joining, but not homologous recombination, enables survival for cells exposed to a histone deacetylase inhibitor. Nucleic Acids Res 33:5320–5330

    PubMed  CAS  Google Scholar 

  • Yung TM, Satoh MS (2001) Functional competition between poly(ADP-ribose) polymerase and its 24-kDa apoptotic fragment in DNA repair and transcription. J Biol Chem 276:11279–11286

    PubMed  CAS  Google Scholar 

  • Zajdela F, Latarjet R (1973) Inhibitory effect of caffeine on the induction of cutaneous cancers by ultraviolet rays in the mouse. C R Acad Sci Hebd Seances Acad Sci D 277:1073–1076

    PubMed  CAS  Google Scholar 

  • Zhang JS, Ding J, Tang QM, Li M, Zhao M, Lu LJ, Chen LJ, Yuan ST (1999) Synthesis and antitumour activity of novel diterpenequinone salvicine and the analogs. Bioorg Med Chem Lett 9:2731–2736

    PubMed  CAS  Google Scholar 

  • Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18:1272–1282

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant CA 10Z792 to D.A.B., and DOD Breast Cancer fellowships, X81XWH-05-1-0248 and X81XWH-04-1-0301 to K.E.R. and MSB, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Boothman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bentle, M.S., Bey, E.A., Dong, Y. et al. New tricks for old drugs: the anticarcinogenic potential of DNA repair inhibitors. J Mol Hist 37, 203–218 (2006). https://doi.org/10.1007/s10735-006-9043-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-006-9043-8

Keywords

Navigation