This fast car can move faster: a review of PLS-SEM application in higher education research

Abstract

The relevance and prominence of the partial least squares structural equation modeling (PLS-SEM) method has recently increased in higher education research, especially in explanatory and predictive studies. We therefore first aim to assess previous PLS-SEM applications by providing a systematic review; second, we aim to highlight and summarize important guidelines for conducting a rigorous PLS-SEM analysis of the current state of results reporting in higher education journals. Specifically, this study focuses on empirical PLS-SEM applications in 14 major higher education journals indexed in the Thomson Reuters Web of Science and in the Elsevier-Scopus databases between 1999 and 2018. We initially identified 49 relevant papers published in 10 higher education journals. Based on these papers’ generally followed guidelines, we thereafter identified various issues related to data screening, model characteristics, measurement model evaluation, structural model evaluation, and the application of state-of-the-art PLS-SEM advanced methods requiring particular attention. Furthermore, we recommend recent guidelines to improve PLS-SEM applications and practices, besides providing specific suggestions regarding utilizing the method’s strength in terms of relevant higher education research questions. Our findings remind researchers, reviewers, and journal editors to remain vigilant, should help them avoid inaccuracies in future publications, and ensure rigor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Acosta-Gonzaga, E., & Walet, N. R. (2017). The role of attitudinal factors in mathematical on-line assessments: a study of undergraduate STEM students. Assessment & Evaluation in Higher Education, 43(5), 710–726. https://doi.org/10.1080/02602938.2017.1401976.

    Article  Google Scholar 

  2. Aguirre-Urreta, M. I., & Rönkkö, M. (2018). Statistical inference with PLSc using bootstrap confidence intervals. Mis Quarterly, 42(3), 1001–1020. https://doi.org/10.25300/MISQ/2018/13587.

    Article  Google Scholar 

  3. Al-Busaidi, K. A., & Al-Shihi, H. (2012). Key factors to instructors’ satisfaction of learning management systems in blended learning. Journal of Computing in Higher Education, 24(1), 18–39. https://doi.org/10.1007/s12528-011-9051-x.

    Article  Google Scholar 

  4. Ali, F., Rasoolimanesh, S. M., Sarstedt, M., Ringle, C. M., & Ryu, K. (2018). An assessment of the use of partial least squares structural equation modeling (PLS-SEM) in hospitality research. International Journal of Contemporary Hospitality Management, 30(1), 514–538.

    Article  Google Scholar 

  5. Alnawas, I. (2015). Student orientation in higher education: development of the construct. Higher Education, 69(4), 625–652. https://doi.org/10.1007/s10734-014-9794-1.

    Article  Google Scholar 

  6. Alt, D., & Itzkovich, Y. (2018). The connection between perceived constructivist learning environments and faculty uncivil authoritarian behaviors. Higher Education, 77(3), 437–454. https://doi.org/10.1007/s10734-018-0281-y.

    Article  Google Scholar 

  7. Ang, L., Breyer, Y. A., & Pitt, J. (2018). Course recommendation as a construct in student evaluations: will students recommend your course? Studies in Higher Education, 43(6), 944–959. https://doi.org/10.1080/03075079.2016.1199543.

    Article  Google Scholar 

  8. Aoun, C., Vatanasakdakul, S., & Ang, K. (2018). Feedback for thought: examining the influence of feedback constituents on learning experience. Studies in Higher Education, 43(1), 72–95. https://doi.org/10.1080/03075079.2016.1156665.

    Article  Google Scholar 

  9. Aparicio, M., Bacao, F., & Oliveira, T. (2016). Cultural impacts on e-learning systems' success. The Internet and Higher Education, 31, 58–70. https://doi.org/10.1016/j.iheduc.2016.06.003.

    Article  Google Scholar 

  10. Atif, A., Richards, D., Busch, P., & Bilgin, A. (2015). Assuring graduate competency: a technology acceptance model for course guide tools. [journal article]. Journal of Computing in Higher Education, 27(2), 94–113. https://doi.org/10.1007/s12528-015-9095-4.

    Article  Google Scholar 

  11. Becker, J.-M., Rai, A., Ringle, C. M., & Völckner, F. (2013). Discovering unobserved heterogeneity in structural equation models to avert validity threats. MIS Quarterly, 37(3), 665–694.

    Article  Google Scholar 

  12. Becker, J.-M., Ringle, C. M., & Sarstedt, M. (2018). Estimating moderating effects in PLS-SEM and PLSc-SEM: interaction term generation*data treatment. Journal of Applied Structural Equation Modeling, 2(2), 1–21.

    Article  Google Scholar 

  13. Bennett, R. (2005). Factors associated with student plagiarism in a post-1992 university. Assessment & Evaluation in Higher Education, 30(2), 137–162. https://doi.org/10.1080/0260293042000264244.

    Article  Google Scholar 

  14. Bentler, P. M., & Huang, W. (2014). On components, latent variables, PLS and simple methods: reactions to Rigdon's rethinking of PLS. Long Range Planning, 47(3), 138–145. https://doi.org/10.1016/j.lrp.2014.02.005.

    Article  Google Scholar 

  15. Bere, A., & Rambe, P. (2016). An empirical analysis of the determinants of mobile instant messaging appropriation in university learning. Journal of Computing in Higher Education, 28(2), 172–198. https://doi.org/10.1007/s12528-016-9112-2.

    Article  Google Scholar 

  16. Berger, J. B., & Milem, J. F. (1999). The role of student involvement and perceptions of integration in a causal model of student persistence. Research in Higher Education, 40(6), 641–664. https://doi.org/10.1023/a:1018708813711.

    Article  Google Scholar 

  17. Bollen, K. A., & Ting, K.-f. (2000). A tetrad test for causal indicators. Psychological Methods, 5(1), 3–22. https://doi.org/10.1037/1082-989X.5.1.3.

    Article  Google Scholar 

  18. Braun, J., & Zolfagharian, M. (2016). Student participation in academic advising: propensity, behavior, attribution and satisfaction. Research in Higher Education, 57(8), 968–989. https://doi.org/10.1007/s11162-016-9414-2.

    Article  Google Scholar 

  19. Bravo, R., Lucia-Palacios, L., & Martin, M. J. (2016). Processes and outcomes in student teamwork. An empirical study in a marketing subject. Studies in Higher Education, 41(2), 302–320. https://doi.org/10.1080/03075079.2014.926319.

    Article  Google Scholar 

  20. Bravo, R., Catalán, S., & Pina, J. M. (2018). Analysing teamwork in higher education: an empirical study on the antecedents and consequences of team cohesiveness. Studies in Higher Education. https://doi.org/10.1080/03075079.2017.1420049.

  21. Brown, R. M., & Mazzarol, T. W. (2009). The importance of institutional image to student satisfaction and loyalty within higher education. Higher Education, 58(1), 81–95. https://doi.org/10.1007/s10734-008-9183-8.

    Article  Google Scholar 

  22. Byrne, B. M. (2016). Structural equation modeling with AMOS: basic concepts, applications, and programming (3 ed.). New York: Routledge.

    Google Scholar 

  23. Cai, J., Yang, H. H., Gong, D., MacLeod, J., & Zhu, S. (2019). Understanding the continued use of flipped classroom instruction: a personal beliefs model in Chinese higher education. Journal of Computing in Higher Education, 31(1), 137–155. https://doi.org/10.1007/s12528-018-9196-y.

    Article  Google Scholar 

  24. Chen, Y.-H., & Chengalur-Smith, I. (2015). Factors influencing students' use of a library web portal: applying course-integrated information literacy instruction as an intervention. The Internet and Higher Education, 26, 42–55. https://doi.org/10.1016/j.iheduc.2015.04.005.

    Article  Google Scholar 

  25. Chin, W. W. (1998a). Commentary: issues and opinion on structural equation modeling. MIS Quarterly, 22(1), vii–xvi.

    Google Scholar 

  26. Chin, W. W. (1998b). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–358). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  27. Chin, W. W. (2010). How to write up and report PLS analyses. In V. E. Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: Concepts, methods and applications (pp. 655–690). Berlin: Springer.

    Google Scholar 

  28. Chin, W. W., & Dibbern, J. (2010). An introduction to a permutation based procedure for multi-group PLS analysis: results of tests of differences on simulated data and a cross cultural analysis of the sourcing of information system services between Germany and the USA. In V. E. Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: Concepts, methods and applications (pp. 171–193). Berlin: Springer.

    Google Scholar 

  29. Chin, W. W., Thatcher, J. B., Wright, R. T., & Steel, D. Controlling for common method variance in PLS analysis: the measured latent marker variable approach. In PLS 2012, New York; 2012 (Vol. 56, pp. 231–239, New Perspectives in Partial Least Squares and Related Methods). Springer.

  30. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2ed.). Hillsdale: Lawrence Erlbaum Associates Publishing.

    Google Scholar 

  31. Diamantopoulos, A., & Siguaw, J. A. (2006). Formative versus reflective indicators in organizational measure development: a comparison and empirical illustration. British Journal of Management, 17(4), 263–282. https://doi.org/10.1111/j.1467-8551.2006.00500.x.

    Article  Google Scholar 

  32. Diamantopoulos, A., Sarstedt, M., Fuchs, C., Wilczynski, P., & Kaiser, S. (2012). Guidelines for choosing between multi-item and single-item scales for construct measurement: a predictive validity perspective. [journal article]. Journal of the Academy of Marketing Science, 40(3), 434–449. https://doi.org/10.1007/s11747-011-0300-3.

    Article  Google Scholar 

  33. Diep, N. A., Cocquyt, C., Zhu, C., Vanwing, T., & de Greef, M. (2017). Effects of core self-evaluation and online interaction quality on adults' learning performance and bonding and bridging social capital. The Internet and Higher Education, 34, 41–55. https://doi.org/10.1016/j.iheduc.2017.05.002.

    Article  Google Scholar 

  34. Dijkstra, T. K., & Henseler, J. (2015). Consistent partial least squares path modeling. MIS Quarterly, 39(2), 297–316.

    Article  Google Scholar 

  35. Dijkstra, T. K., & Schermelleh-Engel, K. (2014). Consistent partial least squares for nonlinear structural equation models. [journal article]. Psychometrika, 79(4), 585–604. https://doi.org/10.1007/s11336-013-9370-0.

    Article  Google Scholar 

  36. do Valle, P. O., & Assaker, G. (2016). Using partial least squares structural equation modeling in tourism research: a review of past research and recommendations for future applications. Journal of Travel Research, 55(6), 695–708. https://doi.org/10.1177/0047287515569779.

    Article  Google Scholar 

  37. Doleck, T., Bazelais, P., & Lemay, D. J. (2018). The role of behavioral expectation in technology acceptance: a CEGEP case study. Journal of Computing in Higher Education, 30(3), 407–425. https://doi.org/10.1007/s12528-017-9158-9.

    Article  Google Scholar 

  38. Doña Toledo, L., & Luque Martínez, T. (2018). How loyal can a graduate ever be? The influence of motivation and employment on student loyalty. Studies in Higher Education. https://doi.org/10.1080/03075079.2018.1532987.

  39. Fandos-Herrera, C., Jiménez-Martínez, J., Orús, C., & Pina, J. M. (2017). Introducing the discussant role to stimulate debate in the classroom: effects on interactivity, learning outcomes, satisfaction and attitudes. Studies in Higher Education, 44(2), 380–396. https://doi.org/10.1080/03075079.2017.1366437.

    Article  Google Scholar 

  40. Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). London: Sage.

    Google Scholar 

  41. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312.

    Article  Google Scholar 

  42. Franke, G., & Sarstedt, M. (2019). Heuristics versus statistics in discriminant validity testing: a comparison of four procedures. Internet Research, 29(3), 430–447. https://doi.org/10.1108/IntR-12-2017-0515.

    Article  Google Scholar 

  43. Garson, G. D. (2016). Partial least squares: regression and structural equation models. Asheboro: Statistical Associates Publishing.

    Google Scholar 

  44. Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101–107. https://doi.org/10.2307/2334290.

    Article  Google Scholar 

  45. Gómez, M., Aranda, E., & Santos, J. (2017). A competency model for higher education: an assessment based on placements. Studies in Higher Education, 42(12), 2195–2215. https://doi.org/10.1080/03075079.2016.1138937.

    Article  Google Scholar 

  46. Green, T. (2016). A methodological review of structural equation modelling in higher education research. Studies in Higher Education, 41(12), 2125–2155.

    Article  Google Scholar 

  47. Gu, J., He, C., & Liu, H. (2017). Supervisory styles and graduate student creativity: the mediating roles of creative self-efficacy and intrinsic motivation. Studies in Higher Education, 42(4), 721–742. https://doi.org/10.1080/03075079.2015.1072149.

    Article  Google Scholar 

  48. Gudergan, S. P., Ringle, C. M., Wende, S., & Will, A. (2008). Confirmatory tetrad analysis in PLS path modeling. Journal of Business Research, 61(12), 1238–1249. https://doi.org/10.1016/j.jbusres.2008.01.012.

    Article  Google Scholar 

  49. Haenlein, M., & Kaplan, A. M. (2004). A Beginner's guide to partial least squares analysis. Understanding Statistics, 3(4), 283–297. https://doi.org/10.1207/s15328031us0304_4.

    Article  Google Scholar 

  50. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. https://doi.org/10.2753/MTP1069-6679190202.

    Article  Google Scholar 

  51. Hair, J. F., Sarstedt, M., Pieper, T. M., & Ringle, C. M. (2012a). The use of partial least squares structural equation modeling in strategic management research: a review of past practices and recommendations for future applications. Long Range Planning, 45(5–6), 320–340. https://doi.org/10.1016/j.lrp.2012.09.008.

    Article  Google Scholar 

  52. Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012b). An assessment of the use of partial least squares structural equation modeling in marketing research. [journal article]. Journal of the Academy of Marketing Science, 40(3), 414–433. https://doi.org/10.1007/s11747-011-0261-6.

    Article  Google Scholar 

  53. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis: Pearson new international edition (7th ed.). Harlow: Pearson Education Limited.

    Google Scholar 

  54. Hair, J. F., Sarstedt, M., Matthews, L. M., & Ringle, C. M. (2016). Identifying and treating unobserved heterogeneity with FIMIX-PLS: part I—method. European Business Review, 28(1), 63–76. https://doi.org/10.1108/EBR-09-2015-0094.

    Article  Google Scholar 

  55. Hair, J. F., Hollingsworth, C. L., Randolph, A. B., & Chong, A. Y. L. (2017a). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management & Data Systems, 117(3), 442–458. https://doi.org/10.1108/IMDS-04-2016-0130.

    Article  Google Scholar 

  56. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017b). A primer on partial least squares structural equation modeling (PLS-SEM) (2th ed.). Thousand Oaks: Sage.

    Google Scholar 

  57. Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., & Thiele, K. O. (2017c). Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods. Journal of the Academy of Marketing Science, 45(5), 616–632. https://doi.org/10.1007/s11747-017-0517-x.

    Article  Google Scholar 

  58. Hair, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2018). Advanced issues in partial least squares structural equation modeling. Thousand Oaks: Sage.

    Google Scholar 

  59. Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019a). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203.

    Article  Google Scholar 

  60. Hair, J. F., Sarstedt, M., & Ringle, C. M. (2019b). Rethinking some of the rethinking of partial least squares. European Journal of Marketing, 53(4), 566–584. https://doi.org/10.1108/EJM-10-2018-0665.

    Article  Google Scholar 

  61. Henseler, J., & Chin, W. W. (2010). A comparison of approaches for the analysis of interaction effects between latent variables using partial least squares path modeling. Structural Equation Modeling: A Multidisciplinary Journal, 17(1), 82–109. https://doi.org/10.1080/10705510903439003.

    Article  Google Scholar 

  62. Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In R. R. Sinkovics & P. N. Ghauri (Eds.), New challenges to international marketing (advances in international marketing) (pp. 277–319). Bingley: Emerald.

    Google Scholar 

  63. Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., et al. (2014). Common beliefs and reality about PLS: comments on Rönkkö and Evermann (2013). Organizational Research Methods, 17(2), 182–209. https://doi.org/10.1177/1094428114526928.

    Article  Google Scholar 

  64. Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8.

    Article  Google Scholar 

  65. Henseler, J., Ringle, C. M., & Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3), 405–431. https://doi.org/10.1108/IMR-09-2014-0304.

    Article  Google Scholar 

  66. Henseler, J., Hubona, G., & Ray, P. A. (2017). Partial least squares path modeling: updated guidelines. In H. Latan & R. Noonan (Eds.), Partial least squares path modeling: Basic concepts, methodological issues and applications (pp. 19–39). Heidelberg: Springer.

    Google Scholar 

  67. Ho, R. (2013). Handbook of univariate and multivariate data analysis with IBM SPSS (2ed.). Boca Raton: CRC Press.

    Google Scholar 

  68. Hsia, J.-W. (2016). The effects of locus of control on university students’ mobile learning adoption. Journal of Computing in Higher Education, 28(1), 1–17. https://doi.org/10.1007/s12528-015-9103-8.

    Article  Google Scholar 

  69. Hsiao, C.-H. (2015). Impact of ethical and affective variables on cheating: comparison of undergraduate students with and without jobs. Higher Education, 69(1), 55–77. https://doi.org/10.1007/s10734-014-9761-x.

    Article  Google Scholar 

  70. Hult, G. T. M., Hair, J. F., Proksch, D., Sarstedt, M., Pinkwart, A., & Ringle, C. M. (2018). Addressing endogeneity in international marketing applications of partial least squares structural equation modeling. Journal of International Marketing, 26(3), 1–21. https://doi.org/10.1509/jim.17.0151.

    Article  Google Scholar 

  71. Hwang, H., Sarstedt, M., Cheah, J. H., & Ringle, C. M. (2020). A concept analysis of methodological research on composite-based structural equation modeling: bridging PLSPM and GSCA. Behaviormetrika, 47, 219–241. https://doi.org/10.1007/s41237-019-00085-5.

    Article  Google Scholar 

  72. Jayasingam, S., Fujiwara, Y., & Ramayah, T. (2016). ‘I am competent so I can be choosy’: choosiness and its implication on graduate employability. Studies in Higher Education, 43(7), 1119–1134. https://doi.org/10.1080/03075079.2016.1221918.

    Article  Google Scholar 

  73. Kalafatis, S., & Ledden, L. (2013). Carry-over effects in perceptions of educational value. Studies in Higher Education, 38(10), 1540–1561. https://doi.org/10.1080/03075079.2011.643862.

    Article  Google Scholar 

  74. Kaufmann, L., & Gaeckler, J. (2015). A structured review of partial least squares in supply chain management research. Journal of Purchasing and Supply Management, 21(4), 259–272. https://doi.org/10.1016/j.pursup.2015.04.005.

    Article  Google Scholar 

  75. Kenny, D. A. (2015). Moderation. http://davidakenny.net/cm/moderation.htm.

  76. Khan, G. F., Sarstedt, M., Shiau, W.-L., Hair Joseph, F., Ringle Christian, M., & Fritze, M. (2019). Methodological research on partial least squares structural equation modeling (PLS-SEM). Internet Research, 29(3), 407–429. https://doi.org/10.1108/IntR-12-2017-0509.

    Article  Google Scholar 

  77. Khine, M. S. (2013). Application of structural equation modeling in educational research and practice (contemporary approaches to research in learning innovations, vol. 7). Rotterdam: Sense Publishers.

    Google Scholar 

  78. Kock, N. (2015). Common method bias in PLS-SEM: a full collinearity assessment approach. International Journal of e-Collaboration, 11(4), 1–10. https://doi.org/10.4018/ijec.2015100101.

    Article  Google Scholar 

  79. Kock, N. (2017). WarpPLS user manual: Version 6.0. Laredo: ScriptWarp Systems.

    Google Scholar 

  80. Kock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS-SEM: the inverse square root and gamma-exponential methods. Information Systems Journal, 28(1), 227–261. https://doi.org/10.1111/isj.12131.

    Article  Google Scholar 

  81. Lakhal, S., Khechine, H., & Pascot, D. (2013). Student behavioural intentions to use desktop video conferencing in a distance course: integration of autonomy to the UTAUT model. [journal article]. Journal of Computing in Higher Education, 25(2), 93–121. https://doi.org/10.1007/s12528-013-9069-3.

    Article  Google Scholar 

  82. Lechuga Sancho, M. P., Martín-Navarro, A., & Ramos-Rodríguez, A. R. (2018). Will they end up doing what they like? The moderating role of the attitude towards entrepreneurship in the formation of entrepreneurial intentions. Studies in Higher Education, 1–18. https://doi.org/10.1080/03075079.2018.1539959.

  83. Lin, H.-M., Lee, M.-H., Liang, J.-C., Chang, H.-Y., Huang, P., & Tsai, C.-C. (2019). A review of using partial least square structural equation modeling in e-learning research. British Journal of Educational Technology. https://doi.org/10.1111/bjet.12890.

  84. Lohmöller, J. B. (1989). Latent variable path modeling with partial least squares. Heidelberg: Physica.

    Google Scholar 

  85. Margalina, V. M., De-Pablos-Heredero, C., & Montes-Botella, J. L. (2017). Achieving quality in e-learning through relational coordination. Studies in Higher Education, 42(9), 1655–1670. https://doi.org/10.1080/03075079.2015.1113953.

    Article  Google Scholar 

  86. Matthews, L. M. (2017). Applying multigroup analysis in PLS-SEM: a step-by-step process. In H. Latan & R. Noonan (Eds.), Partial least squares path modeling: Basic concepts, methodological issues and applications (pp. 219–243). Cham: Springer.

    Google Scholar 

  87. Matthews, L. M., Sarstedt, M., Hair, J. F., & Ringle, C. M. (2016). Identifying and treating unobserved heterogeneity with FIMIX-PLS: part II—a case study. European Business Review, 28(2), 208–224. https://doi.org/10.1108/EBR-09-2015-0095.

    Article  Google Scholar 

  88. Maxwell-Stuart, R., Taheri, B., Paterson, A. S., O’Gorman, K., & Jackson, W. (2016). Working together to increase student satisfaction: exploring the effects of mode of study and fee status. Studies in Higher Education, 43(8), 1392–1404. https://doi.org/10.1080/03075079.2016.1257601.

    Article  Google Scholar 

  89. Molinillo, S., Anaya-Sánchez, R., Aguilar-Illescas, R., & Vallespín-Arán, M. (2018). Social media-based collaborative learning: exploring antecedents of attitude. The Internet and Higher Education, 38, 18–27. https://doi.org/10.1016/j.iheduc.2018.04.003.

    Article  Google Scholar 

  90. Nejati, M., & Shafaei, A. (2018). Leading by example: the influence of ethical supervision on students’ prosocial behavior. Higher Education, 75(1), 75–89. https://doi.org/10.1007/s10734-017-0130-4.

    Article  Google Scholar 

  91. Nitzl, C. (2016). The use of partial least squares structural equation modelling (PLS-SEM) in management accounting research: directions for future theory development. Journal of Accounting Literature, 37, 19–35. https://doi.org/10.1016/j.acclit.2016.09.003.

    Article  Google Scholar 

  92. Nitzl, C., Roldán, J. L., & Cepeda-Carrión, G. (2016). Mediation analysis in partial least squares path modeling: helping researchers discuss more sophisticated models. Industrial Management & Data Systems, 116(9), 1849–1864. https://doi.org/10.1108/IMDS-07-2015-0302.

    Article  Google Scholar 

  93. Nkhoma, M., Sriratanaviriyakul, N., & Quang, H. L. (2017). Using case method to enrich students’ learning outcomes. Active Learning in Higher Education, 18(1), 37–50. https://doi.org/10.1177/1469787417693501.

    Article  Google Scholar 

  94. Nowiński, W., Haddoud, M. Y., Lančarič, D., Egerová, D., & Czeglédi, C. (2017). The impact of entrepreneurship education, entrepreneurial self-efficacy and gender on entrepreneurial intentions of university students in the Visegrad countries. Studies in Higher Education, 44(2), 361–379. https://doi.org/10.1080/03075079.2017.1365359.

    Article  Google Scholar 

  95. Owusu, G. M. Y., Teddy Ossei, K., Welbeck, E. E., & Ofori, C. G. (2017). Environmental literacy of business students in Ghana. International Journal of Sustainability in Higher Education, 18(3), 415–435. https://doi.org/10.1108/IJSHE-02-2016-0025.

    Article  Google Scholar 

  96. Padilla-Angulo, L. (2017). Student associations and entrepreneurial intentions. Studies in Higher Education, 44(1), 45–58. https://doi.org/10.1080/03075079.2017.1336215.

    Article  Google Scholar 

  97. Pappas, I. O., Giannakos, M. N., & Mikalef, P. (2017). Investigating students’ use and adoption of with-video assignments: lessons learnt for video-based open educational resources. [journal article]. Journal of Computing in Higher Education, 29(1), 160–177. https://doi.org/10.1007/s12528-017-9132-6.

    Article  Google Scholar 

  98. Peng, D. X., & Lai, F. (2012). Using partial least squares in operations management research: a practical guideline and summary of past research. Journal of Operations Management, 30(6), 467–480. https://doi.org/10.1016/j.jom.2012.06.002.

    Article  Google Scholar 

  99. Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review of Psychology, 63(1), 539–569. https://doi.org/10.1146/annurev-psych-120710-100452.

    Article  Google Scholar 

  100. Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36(4), 717–731.

    Article  Google Scholar 

  101. Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891. https://doi.org/10.3758/BRM.40.3.879.

    Article  Google Scholar 

  102. Ramayah, T., Cheah, J., Chuah, F., Ting, H., & Memon, M. A. (2016). Partial least squares structural equation modeling (PLS-SEM) using SmartPLS 3.0: an updated and practical guide to statistical analysis (1th ed.). Singapore: Springer.

    Google Scholar 

  103. Ray, S., Danks, N., & Velasquez Estrada, J. M. (2019). Seminr: domain-specific language for building PLS structural equation model.

  104. Reinartz, W., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. International Journal of Research in Marketing, 26(4), 332–344. https://doi.org/10.1016/j.ijresmar.2009.08.001.

    Article  Google Scholar 

  105. Richter, N. F., Cepeda-Carrión, G., Roldán, J. L., & Ringle, C. M. (2016a). European management research using partial least squares structural equation modeling (PLS-SEM). European Management Journal, 34(6), 589–597. https://doi.org/10.1016/j.emj.2016.08.001.

    Article  Google Scholar 

  106. Richter, N. F., Sinkovics Rudolf, R., Ringle Christian, M., & Schlägel, C. (2016b). A critical look at the use of SEM in international business research. International Marketing Review, 33(3), 376–404. https://doi.org/10.1108/IMR-04-2014-0148.

    Article  Google Scholar 

  107. Rigdon, E. E. (2012). Rethinking partial least squares path modeling: in praise of simple methods. Long Range Planning, 45(5–6), 341–358. https://doi.org/10.1016/j.lrp.2012.09.010.

    Article  Google Scholar 

  108. Rigdon, E. E. (2016). Choosing PLS path modeling as analytical method in European management research: a realist perspective. European Management Journal, 34(6), 598–605. https://doi.org/10.1016/j.emj.2016.05.006.

    Article  Google Scholar 

  109. Rigdon, E. E., Sarstedt, M., & Ringle, C. M. (2017). On comparing results from CB-SEM and PLS-SEM: five perspectives and five recommendations. Marketing ZPF, 39(3), 4–16. https://doi.org/10.15358/0344-1369-2017-3-4.

    Article  Google Scholar 

  110. Rigdon, E. E., Becker, J.-M., & Sarstedt, M. (2019a). Factor indeterminacy as metrological uncertainty: implications for advancing psychological measurement. Multivariate Behavioral Research, 54(3), 429–443. https://doi.org/10.1080/00273171.2018.1535420.

    Article  Google Scholar 

  111. Rigdon, E. E., Becker, J.-M., & Sarstedt, M. (2019b). Parceling can not reduce factor indeterminacy in factor analysis: a research note. Psychometrika, 84(3), 772–780. https://doi.org/10.1007/s11336-019-09677-2.

    Article  Google Scholar 

  112. Ringle, C. M., & Sarstedt, M. (2016). Gain more insight from your PLS-SEM results: the importance-performance map analysis. Industrial Management & Data Systems, 116(9), 1865–1886. https://doi.org/10.1108/IMDS-10-2015-0449.

    Article  Google Scholar 

  113. Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). A critical look at the use of PLS-SEM in MIS quarterly. MIS Quarterly, 36(1), iii–xiv.

    Article  Google Scholar 

  114. Ringle, C. M., Wende, S., & Becker, J.-M. (2015). SmartPLS.

  115. Ringle, C. M., Sarstedt, M., Mitchell, R., & Gudergan, S. P. (2018). Partial least squares structural equation modeling in HRM research. The International Journal of Human Resource Management, 1–27. https://doi.org/10.1080/09585192.2017.1416655.

  116. Roemer, E. (2016). A tutorial on the use of PLS path modeling in longitudinal studies. Industrial Management & Data Systems, 116(9), 1901–1921. https://doi.org/10.1108/IMDS-07-2015-0317.

    Article  Google Scholar 

  117. Rönkkö, M. (2017). R package matrixpls: matrix-based partial least squares estimation. (1.0.5 ed.).

  118. Sánchez, G., Trinchera, L., & Russolillo, G. (2015). Plspm: tools for partial least squares path modeling (PLS-PM). (0.4.7 ed.).

  119. Sarstedt, M., & Mooi, E. A. (2014). A concise guide to market research: the process, data, and methods using IBM SPSS statistics (2th ed.). Berlin: Springer.

    Google Scholar 

  120. Sarstedt, M., & Ringle, C. M. (2010). Treating unobserved heterogeneity in PLS path modeling: a comparison of FIMIX-PLS with different data analysis strategies. Journal of Applied Statistics, 37(8), 1299–1318. https://doi.org/10.1080/02664760903030213.

    Article  Google Scholar 

  121. Sarstedt, M., Becker, J.-M., Ringle, C. M., & Schwaiger, M. (2011a). Uncovering and treating unobserved heterogeneity with FIMIX-PLS: which model selection criterion provides an appropriate number of segments? Schmalenbach Business Review, 63, 34–62.

    Article  Google Scholar 

  122. Sarstedt, M., Henseler, J., & Ringle, C. M. (2011b). Multigroup analysis in partial least squares (PLS) path modeling: alternative methods and empirical results. Advances in International Marketing, 22, 195–218. https://doi.org/10.1108/S1474-7979(2011)0000022012.

    Article  Google Scholar 

  123. Sarstedt, M., Hair, J. F., Ringle, C. M., Thiele, K. O., & Gudergan, S. P. (2016). Estimation issues with PLS and CBSEM: where the bias lies! Journal of Business Research, 69(10), 3998–4010. https://doi.org/10.1016/j.jbusres.2016.06.007.

    Article  Google Scholar 

  124. Sarstedt, M., Ringle, C. M., & Hair, J. F. (2017). Treating unobserved heterogeneity in PLS-SEM: a multi-method approach. In H. Latan & R. Noonan (Eds.), Partial least squares path modeling: Basic concepts, methodological issues and applications (pp. 197–217). Cham: Springer International Publishing.

    Google Scholar 

  125. Sarstedt, M., Hair, J. F., Cheah, J.-H., Becker, J.-M., & Ringle, C. M. (2019a). How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australasian Marketing Journal (AMJ), 27(3), 197–211. https://doi.org/10.1016/j.ausmj.2019.05.003.

    Article  Google Scholar 

  126. Sarstedt, M., Ringle, C. M., Cheah, J., Ting, H., Moisescu, O. I., & Radomir, L. (2019b). Structural model robustness checks in PLS-SEM. Tourism Economics, 1–24. https://doi.org/10.1177/1354816618823921.

  127. Serenko, A. (2011). Student satisfaction with Canadian music programmes: the application of the American customer satisfaction model in higher education. Assessment & Evaluation in Higher Education, 36(3), 281–299. https://doi.org/10.1080/02602930903337612.

    Article  Google Scholar 

  128. Shafaei, A., & Nordin, A. R. (2016). International postgraduate students’ cross-cultural adaptation in Malaysia: antecedents and outcomes. Research in Higher Education, 57(6), 739–767. https://doi.org/10.1007/s11162-015-9404-9.

    Article  Google Scholar 

  129. Shafaei, A., Nejati, M., & Nordin, A. R. (2016a). Out of sight, out of mind: psychological consequences of attachment and adjustment attitude. Studies in Higher Education, 43(2), 251–268. https://doi.org/10.1080/03075079.2016.1162780.

    Article  Google Scholar 

  130. Shafaei, A., Nejati, M., Quazi, A., & von der Heidt, T. (2016b). ‘When in Rome, do as the romans do’ do international students’ acculturation attitudes impact their ethical academic conduct? Higher Education, 71(5), 651–666. https://doi.org/10.1007/s10734-015-9928-0.

    Article  Google Scholar 

  131. Sharma, P. N., Sarstedt, M., Shmueli, G., Kim, K. H., & Thiele, K. O. (2019a). PLS-based model selection: the role of alternative explanations in information systems research. Journal of the Association for Information Systems, 20(4), 346–397. https://doi.org/10.17005/1.jais.00538.

    Article  Google Scholar 

  132. Sharma, P. N., Shmueli, G., Sarstedt, M., Danks, N. P., & Ray, S. (2019b). Prediction-oriented model selection in partial least squares path modeling. Decision Sciences. https://doi.org/10.1111/deci.12329.

  133. Shmueli, G., Ray, S., Velasquez Estrada, J. M., & Chatla, S. B. (2016). The elephant in the room: predictive performance of PLS models. Journal of Business Research, 69(10), 4552–4564. https://doi.org/10.1016/j.jbusres.2016.03.049.

    Article  Google Scholar 

  134. Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J.-H., Hiram, T., Vaithilingam, S., et al. (2019). Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. European Journal of Marketing, 53(11), 2322–2347. https://doi.org/10.1108/EJM-02-2019-0189.

    Article  Google Scholar 

  135. Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society Series B (Methodological), 36(2), 111–147.

    Article  Google Scholar 

  136. Streukens, S., & Leroi-Werelds, S. (2016). Bootstrapping and PLS-SEM: a step-by-step guide to get more out of your bootstrap results. European Management Journal, 34(6), 618–632. https://doi.org/10.1016/j.emj.2016.06.003.

    Article  Google Scholar 

  137. Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Boston: Pearson Education.

    Google Scholar 

  138. Tan, C. N.-L. (2016). Enhancing knowledge sharing and research collaboration among academics: the role of knowledge management. Higher Education, 71(4), 525–556. https://doi.org/10.1007/s10734-015-9922-6.

    Article  Google Scholar 

  139. Tenenhaus, M., & Vinzi, V. E. (2005). PLS regression, PLS path modeling and generalized procrustean analysis: a combined approach for multiblock analysis. Journal of Chemometrics, 19(3), 145–153. https://doi.org/10.1002/cem.917.

    Article  Google Scholar 

  140. Teo, T., & Khine, M. S. (2009). Structural equation modeling in educational research: concepts and applications. Rotterdam: Sense Publishers.

    Google Scholar 

  141. Tymon, A., & Batistic, S. (2016). Improved academic performance and enhanced employability? The potential double benefit of proactivity for business graduates. Teaching in Higher Education, 21(8), 915–932. https://doi.org/10.1080/13562517.2016.1198761.

    Article  Google Scholar 

  142. Wagener, B. (2018). The importance of affects, self-regulation and relationships in the writing of a master's thesis. Teaching in Higher Education, 23(2), 227–242. https://doi.org/10.1080/13562517.2017.1379480.

    Article  Google Scholar 

  143. Wold, H. (1975). Path models with latent variables: the NIPALS approach. In H. M. Blalock, A. Aganbegian, F. M. Borodkin, R. Boudon, & V. Capecchi (Eds.), Quantitative sociology: International perspectives on mathematical and statistical modeling (pp. 307–357). New York: Academic Press.

    Google Scholar 

  144. Wold, H. (1982). Soft modeling : the basic design and some extensions. In K. G. Joreskog & H. Wold (Eds.), Systems under indirect observation : Causality, structure, prediction (Vol. 2, pp. 1–54). Amsterdam: North-Holland.

    Google Scholar 

  145. Yu, Q., Asaad, Y., Yen, D. A., & Gupta, S. (2018). IMO and internal branding outcomes: an employee perspective in UK HE. Studies in Higher Education, 43(1), 37–56. https://doi.org/10.1080/03075079.2016.1152467.

    Article  Google Scholar 

  146. Zeegers, P. (2004). Student learning in higher education: a path analysis of academic achievement in science. Higher Education Research & Development, 23(1), 35–56. https://doi.org/10.1080/0729436032000168487.

    Article  Google Scholar 

  147. Zhang, X., Zhang, Y., Sun, Y., Lytras, M., Ordonez de Pablos, P., & He, W. (2017). Exploring the effect of transformational leadership on individual creativity in e-learning: a perspective of social exchange theory. Studies in Higher Education, 43(11), 1964–1978. https://doi.org/10.1080/03075079.2017.1296824.

    Article  Google Scholar 

  148. Zhu, Y., Au, W., & Yates, G. (2016). University students' self-control and self-regulated learning in a blended course. The Internet and Higher Education, 30, 54–62. https://doi.org/10.1016/j.iheduc.2016.04.001.

    Article  Google Scholar 

Download references

Acknowledgments

Even though this article does not use the statistical software SmartPLS (www.smartpls.com), Ringle acknowledges a financial interest in SmartPLS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Majid Ghasemy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghasemy, M., Teeroovengadum, V., Becker, JM. et al. This fast car can move faster: a review of PLS-SEM application in higher education research. High Educ 80, 1121–1152 (2020). https://doi.org/10.1007/s10734-020-00534-1

Download citation

Keywords

  • Partial least squares (PLS)
  • Higher education
  • Structural equation modeling (SEM)
  • PLS-SEM
  • Explanatory and predictive studies