The first year in higher education: the role of individual factors and the learning environment for academic integration

  • Hildegard SchaeperEmail author


The transition to higher education and the initial phase of studying play a crucial role in future educational decisions and academic development. To successfully manage this transition, a certain degree of integration into the new environment is required. For this reason, and drawing on the conceptual framework of Tinto’s model of student departure, the study examines academic integration as an important first-year experience. Going beyond Tinto’s approach and most of the previous research, both individual and contextual factors were analysed by estimating multilevel structural equation models. Data were taken from a panel study of new entrants to higher education institutions in Germany (N = 10,697), which is part of the National Educational Panel Study (NEPS). The results corroborate previous findings and confirm the importance of psychological attributes like self-esteem and conscientiousness. They also provide evidence that a cognitively activating learning environment enhances academic integration considerably. However, direct instruction was found to negatively affect academic integration. The study concludes with a discussion of limitations and implications for practice and future research.


Higher education Academic integration Learning environment Personality Student transition Multilevel structural equation modelling 



This paper uses data from the National Educational Panel Study (NEPS; Starting Cohort First-Year Students; doi: From 2008 to 2013, NEPS data was collected as part of the Framework Programme for the Promotion of Empirical Educational Research funded by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung; BMBF). As of 2014, NEPS is carried out by the Leibniz Institute for Educational Trajectories (LIfBi) at the University of Bamberg in cooperation with a nationwide network.

Supplementary material

10734_2019_398_MOESM1_ESM.docx (40 kb)
ESM 1 (DOCX 39 kb)


  1. Bahr, P. R., Toth, C., Thirolf, K., & Massé, J. C. (2013). A review and critique of the literature on community college students’ transition processes and outcomes in four-year institutions. In M. B. Paulsen (Ed.), Higher education: Handbook of theory and research (Vol. 28, pp. 459–511). Dordrecht: Springer.Google Scholar
  2. Beaten, M., Dochy, F., & Struyven, K. (2013). The effects of different learning environments on students’ motivation for learning and their achievement. Br J Educ Psychol, 83(3), 484–501.Google Scholar
  3. Bleidorn, W., Arslan, R. C., Denissen, J. J. A., Rentfrow, P. J., Gebauer, J. E., Potter, J., & Gosling, S. D. (2016). Age and gender differences in self-esteem – a cross-cultural window. J Pers Soc Psychol, 111(3), 396–410.Google Scholar
  4. Blossfeld, H.-P., Roßbach, H.-G., & von Maurice, J. (Eds.). (2011). Education as a lifelong process – The German National Educational Panel Study (NEPS). Zeitschrift für Erziehungswissenschaft, Special Issue 14.Google Scholar
  5. Bowman, N. A., & Denson, N. (2014). A missing piece of the departure puzzle: student-institution fit and intent to persist. Res High Educ, 55(2), 123–142.Google Scholar
  6. Brandtstädter, J., & Renner, G. (1990). Tenacious goal pursuit and flexible goal adjustment: explication and age-related analysis of assimilative and accommodative strategies of coping. Psychol Aging, 5(1), 58–67.Google Scholar
  7. Braxton, J. M., & Hirschy, A. S. (2005). Theoretical developments in the study of college student departure. In A. Seidman (Ed.), College student retention. Formula for student success (pp. 61–87). Westport: Praeger Publishers.Google Scholar
  8. Braxton, J. M., & Lien, L. A. (2000). The viability of academic integration as a central construct in Tinto’s interactionalist theory of college student departure. In J. M. Braxton (Ed.), Reworking the student departure puzzle (pp. 11–28). Nashville: Vanderbilt University Press.Google Scholar
  9. Braxton, J. M., Milem, J. F., & Sullivan, A. S. (2000). The influence of active learning on the college student departure process: toward a revision of Tinto’s theory. J High Educ, 71(5), 569–590.Google Scholar
  10. Briggs, A. R. J., Clark, J., & Hall, I. (2012). Building bridges: understanding student transition to university. Qual High Educ, 18(1), 3–21.Google Scholar
  11. Bronfenbrenner, U. (1979). The ecology of human development: Experiments by nature and design. Cambridge: Harvard University Press.Google Scholar
  12. Busato, V. V., Prins, F. J., Elshout, J. J., & Hamaker, C. (2000). Intellectual ability, learning style, personality, achievement motivation and academic success of psychology students in higher education. Pers Individ Differ, 29(6), 1057–1068.Google Scholar
  13. Coertjens, L., Brahm, T., Trautwein, C., & Lindblom-Ylänne, S. (2017). Students’ transition into higher education from an international perspective. High Educ, 73(3), 357–369.Google Scholar
  14. DeBerard, M. S., Spielmans, G. I., & Julka, D. C. (2004). Predictors of academic achievement and retention among college freshmen: a longitudinal study. Coll Stud J, 38(1), 66–80.Google Scholar
  15. Dickhäuser, O. (2006). Fähigkeitsselbstkonzept: Entstehung, Auswirkung, Förderung. Zeitschrift für Pädagogische Psychologie, 20(1/2), 5–8.Google Scholar
  16. Fenollar, P., Roman, S., & Cuestas, P. J. (2007). University students’ academic performance: an integrative conceptual framework and empirical analysis. Br J Educ Psychol, 77(4), 873–891.Google Scholar
  17. Gale, T., & Parker, S. (2012). Navigating change: a typology of student transition in higher education. Stud High Educ, 39(5), 734–753.Google Scholar
  18. Georg, W. (2009). Individual and institutional factors in the tendency to drop out of higher education: a multilevel analysis using data from the Konstanz Student Survey. Stud High Educ, 34(6), 647–661.Google Scholar
  19. Grässmann, R., Schultheiss, O. C., & Brunstein, J. C. (1998). Exploring the determinants of students’ academic commitment. In P. Nenniger, R. S. Jäger, A. Frey, & M. Wosnitza (Eds.), Advances in motivation (pp. 103–109). Landau: Verlag Empirische Pädagogik.Google Scholar
  20. Heublein, U. (2014). Student drop-out from German higher education institutions. Eur J Educ, 49(4), 497–513.Google Scholar
  21. Heublein, U., Ebert, J., Hutzsch, C., Isleib, S., König, R., Richter, J., & Woisch, A. (2017). Zwischen Studienerwartungen und Studienwirklichkeit. In Hannover: DZHW.Google Scholar
  22. Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: a response to Kirschner, Sweller, and Clark (2006). Educ Psychol, 42(2), 99–107.Google Scholar
  23. Hsieh, P., Sullivan, J. R., & Guerra, N. S. (2007). A closer look at college students: self-efficacy and goal orientation. J Adv Acad, 18(3), 454–476.Google Scholar
  24. Jenert, T., Postareff, L., Brahm, T., & Lindblom-Ylänne, S. (2015). Editorial: Enculturation and development of beginning students. Zeitschrift für Hochschulentwicklung, 10(4), 9–21.Google Scholar
  25. Jenert, T., Brahm, T., Gommers, L., & Kühner, P. (2017). How do they find their place? A typology of students’ enculturation during the first year at a business school. Learn Cult Soc Interact, 12, 87–99.Google Scholar
  26. Kappe, R., & van der Flier, H. (2012). Predicting academic success in higher education: what’s more important than being smart? Eur J Psychol Educ, 27(4), 605–619.Google Scholar
  27. Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: an analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educ Psychol, 41(2), 75–86.Google Scholar
  28. Kreckel, R. (1994). Soziale Integration und nationale Identität. Berliner Journal für Soziologie, 4(1), 13–20.Google Scholar
  29. Kuh, G. D., Cruce, T. M., Shoup, R., Kinzie, J., & Gonyea, R. M. (2008). Unmasking the effects of student engagement on first-year college grades and persistence. J High Educ, 79(5), 540–563.Google Scholar
  30. Kyndt, E., Donche, V., Trigwell, K., & Lindblom-Ylänne, S. (2017). Understanding higher education transitions: Why theory, research and practice matter. In E. Kyndt, V. Donche, K. Trigwell, & S. Lindblom-Ylänne (Eds.), Higher education transitions. Theory and research (pp. 306–319). London: Routledge.Google Scholar
  31. LeBreton, J. M., & Senter, J. L. (2008). Answers to 20 questions about interrater reliability and interrater agreement. Organ Res Methods, 11(4), 815–852.Google Scholar
  32. Leese, M. (2010). Bridging the gap: supporting student transitions into higher education. J Furth High Educ, 34(2), 239–251.Google Scholar
  33. Lüdtke, O., Trautwein, U., Kunter, M., & Baumert, J. (2007). Reliability and agreement of student ratings of the classroom environment: a reanalysis of TIMSS data. Learn Environ Res, 9(3), 215–230.Google Scholar
  34. Lüdtke, O., Robitzsch, A., Trautwein, U., & Kunter, M. (2009). Assessing the impact of learning environments: how to use student ratings of classroom or school characteristics in multilevel modeling. Contemp Educ Psychol, 34(2), 120–131.Google Scholar
  35. Lüdtke, O., Roberts, B. W., Trautwein, U., & Nagy, G. (2011). A random walk down university avenue: life paths, life events, and personality trait change at the transition to university life. J Pers Soc Psychol, 101(3), 620–637.Google Scholar
  36. Mandl, H., & Kopp, B. (2005). Situated learning: Theories and models. In P. Nentwig & D. Weddington (Eds.), Making it relevant. Context based learning of science (pp. 15–34). Münster: Waxmann.Google Scholar
  37. Marsh, H. W., Trautwein, U., Lüdtke, O., Köller, O., & Baumert, J. (2005). Academic self-concept, interest, grades, and standardized test scores: reciprocal effects models of causal ordering. Child Dev, 76(2), 397–416.Google Scholar
  38. Marsh, H. W., Lüdtke, O., Robitzsch, A., Trautwein, U., Asparouhov, T., Muthén, B., & Nagengast, B. (2009). Doubly-latent models of school contextual effects: integrating multilevel and structural equation approaches to control measurement and sampling error. Multivar Behav Res, 44, 764–802.Google Scholar
  39. Marsh, H. W., Lüdtke, O., Nagengast, B., Trautwein, U., Morin, A. J. S., Abduljabbar, A. S., & Köller, O. (2012). Classroom climate and contextual effects: conceptual and methodological issues in the evaluation of group-level effects. Educ Psychol, 47(2), 106–124.Google Scholar
  40. Meng, C., & Heijke, H. (2005). Student time allocation, the learning environment and the acquisition of competencies. (Research Centre for Education and the Labour Market, Research Memorandum 2005/1E). Maastricht: Maastricht University.Google Scholar
  41. Modood, T. (2015). Integration and multiculturalism: Focus on Western Europe. In J. D. Wright (Ed.), International encyclopedia of the social & behavioral sciences (2nd ed., pp. 235–242). Amsterdam: Elsevier.Google Scholar
  42. Möller, J., & Trautwein, U. (2015). Selbstkonzept. In E. Wild & J. Möller (Eds.), Pädagogische Psychologie (2nd ed., pp. 177–199). Berlin, Heidelberg: Springer.Google Scholar
  43. Muthén, L. K., & Muthén, B. O. (2015). Mplus user’s guide (Seventh ed.). Los Angeles: Muthén & Muthén.Google Scholar
  44. Noyens, D., Donche, V., Coertjens, L., & van Petegem, P. (2017). Transitions to higher education: Moving beyond quantity. In E. Kyndt, V. Donche, K. Trigwell, & S. Lindblom-Ylänne (Eds.), Higher education transitions. Theory and research (pp. 3–12). London: Routledge.Google Scholar
  45. OECD. (2015). Immigrant students at school: Easing the journey towards integration. Paris: OECD Publishing.Google Scholar
  46. OECD. (2016). PISA 2015 results, volume I: Excellence and equity in education. Paris: OECD Publishing.Google Scholar
  47. Pascarella, E. T., & Terenzini, P. T. (2005). How college affects students. A third decade of research. San Francisco: Jossey-Bass.Google Scholar
  48. Pike, G. R., Kuh, G. D., & Gonyea, R. M. (2003). The relationship between institutional mission and students’ involvement and educational outcomes. Res High Educ, 44(2), 241–261.Google Scholar
  49. Rammstedt, B., & John, O. P. (2007). Measuring personality in one minute or less: a 10-item short version of the Big Five Inventory in English and German. J Res Pers, 41, 203–212.Google Scholar
  50. Richardson, M., Abraham, C., & Bond, R. (2012). Psychological correlates of university students’ academic performance: A systematic review and meta-analysis. Psychol Bull, 138(2), 353–387.Google Scholar
  51. Robbins, S. B., Lauver, K., Le, H., Davis, D., Langley, R., & Carlstrom, A. (2004). Do psychosocial and study skill factors predict college outcomes? A meta-analysis. Psychol Bull, 130(2), 261–288.Google Scholar
  52. Rosenshine, B. (1987). Direct instruction. In M. J. Dunkin (Ed.), The international encyclopedia of teaching and teacher education (pp. 257–262). Oxford: Pergamon Press.Google Scholar
  53. Sawyer, R., Rutter, A., LeFevre, D., & Jason, M. (2015). Instruction. In S. J. Farenga & D. Ness (Eds.), Encyclopedia of education and human development (pp. 51–78). New York: Routledge.Google Scholar
  54. Schaeper, H., & Weiß, T. (2016). The conceptualization, development, and validation of an instrument for measuring the formal learning environment in higher education. In H.-P. Blossfeld, J. von Maurice, M. Bayer, & J. Skopek (Eds.), Methodological issues of longitudinal surveys: The example of the National Educational Panel Study (pp. 269–292). Wiesbaden: Springer VS.Google Scholar
  55. Schmidt, H. G., von Gog, T., & Paas, F. (2007). Problem-based learning is compatible with human cognitive architecture: commentary on Kirschner, Sweller, and Clark (2006). Educ Psychol, 42(2), 91–97.Google Scholar
  56. Schneider, M., & Preckel, F. (2017). Variables associated with achievement in higher education: a systematic review of meta-analyses. Psychol Bull, 143(6), 565–600.Google Scholar
  57. Severiens, S. E., & Schmidt, H. G. (2009). Academic and social integration and study progress in problem based learning. High Educ, 58(1), 59–69.Google Scholar
  58. Specht, J., Luhmann, M., & Geiser, C. (2014). On the consistency of personality types across adulthood: latent profile analyses in two large-scale panel studies. J Pers Soc Psychol, 107(3), 540–556.Google Scholar
  59. Tinto, V. (1975). Dropout from higher education. A theoretical synthesis of recent research. Rev Educ Res, 45(1), 89–125.Google Scholar
  60. Tinto, V. (1993). Leaving college: Rethinking the causes and cures of student attrition (2nd ed.). Chicago: The University of Chicago Press.Google Scholar
  61. Tinto, V. (1997). Classrooms as communities: exploring the educational character of student persistence. J High Educ, 68(6), 599–632.Google Scholar
  62. Trapmann, S., Hell, B., Hirn, J.-O. W., & Schuler, H. (2007). Meta-analysis of the relationship between the Big Five and academic success at university. Zeitschrift für Psychologie, 215(2), 132–151.Google Scholar
  63. Trautwein, C., & Bosse, E. (2017). The first year in higher education—critical requirements from the student perspective. High Educ, 73(3), 371–387.Google Scholar
  64. Trautwein, U., Jonkmann, K., Gresch, C., Lüdtke, O., Neumann, M., Klusmann, U.,. . . Baumert, J. (2007). Transformation des Sekundarschulsystems und akademische Karrieren (TOSCA). Dokumentation der eingesetzten Items und Skalen, Welle 3. Berlin: Max-Planck-Institut für Bildungsforschung.Google Scholar
  65. Vianello, M., Schnabel, K., Sriram, N., & Nosek, B. A. (2013). Gender differences in implicit and explicit personality traits. Pers Individ Differ, 55(8), 994–999.Google Scholar
  66. von Collani, G., & Herzberg, P. Y. (2003). Eine revidierte Fassung der deutschsprachigen Skala zum Selbstwertgefühl von Rosenberg. Zeitschrift für Differentielle und Diagnostische Psychologie, 24(1), 3–7.Google Scholar
  67. Vossensteyn, H., Kottmann, A., Jongbloed, B., Kaiser, F., Cremonini, L., Stensaker, B., & Wollscheid, S. (2015). Dropout and completion in higher education in Europe: Main report. Luxembourg: Publications Office of the European Union.Google Scholar
  68. Wagner, J., Lüdtke, O., Jonkmann, K., & Trautwein, U. (2013). Cherish yourself: longitudinal patterns and conditions of self-esteem change in the transition to young adulthood. J Pers Soc Psychol, 104(1), 148–163.Google Scholar
  69. Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54(3), 427–450.Google Scholar
  70. Wohlkinger, F., Ditton, H., von Maurice, J., Haugwitz, M., & Blossfeld, H.-P. (2011). Motivational concepts and personality aspects across the life course. Zeitschrift für Erziehungswissenschaft, Special Issue, 14, 155–168.Google Scholar
  71. Wohlkinger, F., Bayer, M., & Ditton, H. (2016). Measuring self-concept in the NEPS. In H.-P. Blossfeld, J. von Maurice, M. Bayer, & J. Skopek (Eds.), Methodological issues of longitudinal surveys: The example of the National Educational Panel Study (pp. 181–193). Wiesbaden: Springer VS.Google Scholar
  72. Wolf-Wendel, L., Ward, K., & Kinzie, J. (2009). A tangled web of terms: the overlap and unique contribution of involvement, engagement, and integration to understanding college student success. J Coll Stud Dev, 40(4), 407–428.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.German Centre for Higher Education Research and Science Studies (DZHW)HannoverGermany

Personalised recommendations