Abstract
One of the more noticeable changes to tertiary teaching over the past decade has been the widespread adoption of digital technologies, in particular eLearning platforms and lecture capture technology. However, much of the current knowledge of how students utilise these new technologies and their effect on traditional lecture attendance is simply derived from student surveys rather than comprehensive independent analyses. In this study, we use cluster analysis to identify common lecture resource utilisation patterns for students in four large first-year business subjects. While common usage patterns with respect to lecture attendance, video lecture recording access and download of lecture notes are identified across our subjects, the proportion of students within each of the utilisation clusters varies widely. Business statistics students are much more likely to either attend lectures or view video recordings compared to economics students, many of whom rely solely on the download of lecture notes. In order to gain insight into how student characteristics may affect these utilisation patterns, we develop a predictive model, quantifying the influences of prior academic performance, gender, age, distance from campus and international student status using statistical modelling. We find a strong role for students’ previous academic performance in explaining lecture resource utilisation patterns. Students’ commuting distance to campus is also established as a factor dissuading physical lecture attendance. Contrary to initial expectations, we also found that females and older students tend to rely more heavily on digital resources rather than lecture attendance. It is hoped that these findings can help first-year instructors and University administrators understand the heterogeneity of student lecture engagement patterns within the first-year experience.
This is a preview of subscription content, access via your institution.
Notes
Namely the motivation, ability, attendance and achievement models (Jones 1984).
Students with missing values for any of the variables were removed from the analysis. Likewise, students who did not attend the final exam were excluded.
We have no insightful explanation for this observation except to note that microeconomics is an elective first-year subject while the other three subjects are compulsory core subjects.
Except in the case of macroeconomics, where we previously observed a much lower average mark.
With the exception of cluster 3 in the statistics subject, denoted with an asterisk in Table 2.
‘High’ frequency is defined as more than 50% of lectures (> 6).
References
Abachi, H. (2014). The impact of m-learning on students and educators. Computers in Human Behavior, 30, 491–496.
Abeyasekera, S. (2003). Chapter 18: Multivariate methods for index construction. Household surveys in developing and transition countries: design, implementation and analysis. United Nations Statistics Division.
Andrietti, V., & Velasco, C. (2015). Lecture attendance, study time, and academic performance: a panel data study. The Journal of Economic Education, 46(3), 239–259.
Ball, D., & Bass, H. (2002). Toward a practice-based theory of mathematical knowledge for teaching. In Proceedings of the 2002 Annual Meeting of The Canadian Mathematics Education Study Group, queens university may 24-28, edited by Simmt, E., and B. Davis: 3-14.
Bassili, J. N. (2008). Media richness and social norms in the choice to attend lectures or to watch them online. Journal of Educational Multimedia and Hypermedia, 17(4), 453–475.
Becker, W. E. (1997). Teaching economics to undergraduates. Journal of Economic Literature, 35(3), 1347–1373.
Becker, W. E., & Watts, M. (1998). Teaching economics at the start of the 21st century: still chalk-and-talk. American Economic Review, 91(2), 446–451.
Berenson, M., Levine, D., Szabat, K., O’Brien, M., Watson, J., & Jayne, N. (2015). Basic business statistics. Australia: Pearson.
Biggs, J. (1999). Teaching for quality learning at university. Buckingham: Open University Press.
Bishop, J. L., & Verleger, M. A. (2013). The flipped classroom: a survey of the research. Paper presented at the 120th ASEE Annual Conference and Exposition, Atlanta, June 23–26.
Bongey, S. B., Cizadlo, G., & Kalnbach, L. (2006). Explorations in course-casting: podcasts in higher education. Campus-Wide Information Systems, 23(5), 350–367.
Bos, N., & Brand-Gruwel, S. (2016). Profiling student behaviour in a blended course: closing the gap between blended teaching and blended learning. In Proceedings of the 8th International Conference on Computer Supported Education (CSEDU 2016) - Volume 2, pp. 65–72.
Bos, N., Groeneveld, C., van Bruggen, J., & Brand-Gruwel, S. (2016). The use of recorded lectures in education and the impact on lecture attendance and exam performance. British Journal of Educational Technology, 47(5), 906–917.
Brooks, C. (2014). Introductory econometrics for finance. Cambridge: Cambridge University Press.
Brotherton, J. A., & Abowd, G. D. (2004). Lessons learned from eClass: assessing automated capture and access in the classroom. ACM Transactions on Computer-Human Interaction, 11(2), 121–155.
Cilesiz, S. (2015). Undergraduate students’ experiences with recorded lectures: towards a theory of acculturation. Higher Education, 69(3), 471–493.
Coates, H., James, R., & Baldwin, G. (2005). A critical examination of the effects of learning management systems on university teaching and learning. Tertiary Education and Management, 11(1), 19–36.
Cohn, E., & Johnson, E. (2006). Class attendance and performance in principles of economics. Education Economics, 14(2), 211–233.
Cooke, M., Watson, B., Blacklock, M., Mansah, M., Howard, M., Johnston, A., Tower, M., & Murfield, J. (2012). Lecture capture: first year student nurses’ experiences of a web-based lecture technology. Australian Journal of Advanced Nursing, 29(3), 14–21.
Copley, J. (2007). Audio and video podcasts of lectures for campus-based students: Production and evaluation of student use. Innovations in Education and Teaching International, 44(4), 387–399.
Davis, S., Connolly, A., & Linfield, E. (2009). Lecture capture: making the most of face-to-face learning. Engineering Education: A Journal of the Higher Education Academy, 4(2), 4–13.
Durdan, G. C., & Ellis, L. V. (1995). The effects of attendance on student learning in principles of economics. American Economic Review: Papers and Proceedings, 85(2), 343–346.
Ellis, R. A., Steed, A. F., & Applebee, A. C. (2006). Teacher conceptions of blended learning, blended teaching and associations with approaches to design. Australasian Journal of Educational Technology, 22(3), 312–335.
Garrison, D. R., & Kanuka, H. (2004). Blended learning: uncovering its transformative potential in higher education. The Internet and Higher Education, 7(2), 95–105.
Gendron, P., & Pieper, P. (2005). Does attendance matter? Evidence from an Ontario ITAL. Unpublished discussion paper, Humber Institute of Technology & Advanced Learning, Toronto http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.8735&rep=rep1&type=pdf. Accessed 2 May 2017.
Gonzáles, C. (2010). What do university teachers think eLearning is good for in their teaching? Studies in Higher Education, 35(1), 61–78.
Gosper, M. V., McNeill, M. A., & Woo, K. (2010). Harnessing the power of technologies to manage collaborative e-learning projects in dispersed environments. Journal of Distance Education, 24(1), 167–186.
Grabe, M., & Christopherson, K. (2007). Optional student use of online lecture resources: resource preferences, performance and lecture attendance. Journal of Computer Assisted Learning, 24(1), 1–10.
Guney, Y. (2009). Exogenous and endogenous factors influencing students’ performance in undergraduate accounting modules. Accounting Education, 18(1), 51–73.
Harley, D., Henke, J., Lawrence, S., McMartin, F., Maher, M., Gawlick, M., & Muller, P. (2003). Costs, culture, and complexity: an analysis of technology enhancements in a large lecture course at UC Berkeley.” https://www.researchgate.net/publication/46438019_Costs_Culture_and_Complexity_An_Analysis_of_Technology_Enhancements_in_a_Large_Lecture_Course_at_UC_Berkeley. Accessed 2 May 2017.
Heckman, J. J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables. Annals of Economic and Social Measurement, 5, 475–492.
Hew, K. F., & Cheung, W. S. (2014). Students’ and instructors’ use of massive open online courses (MOOCs): motivations and challenges. Educational Research Review, 12, 45–58.
Horn, P., Jansen, A., & Yu, D. (2011). Factors explaining the academic success of second-year economics students: and exploratory analysis. South African Journal of Economics, 79(2), 202–210.
Inglis, M., Palipana, A., Trenholm, S., & Ward, J. (2011). Individual differences in students’ use of optional learning resources. Journal of Computer Assisted Learning, 27, 490–502.
Jones, C. H. (1984). Interaction of absences and grades in a college course. The Journal of Psychology, 116, 133–136.
Kahu, E. R. (2013). Framing student engagement in higher education. Studies in Higher Education, 38(5), 758–773.
Kovanovic, V., Gasevic, D., Joksimovic, S., Hatala, M., & Adesope, O. (2015). Analytics of communities of inquiry: effects of learning technology use on cognitive presence in asynchronous online discussions. Internet and Higher Education, 27, 74–89.
Le, A., Joordens, S., Chrysostomou, S., & Grinnell, R. (2010). Online lecture accessibility and its influence on performance in skills-based courses. Computers and Education, 55, 313–319.
Leadbeater, W., Shuttleworth, T., Couperthwaite, J., & Nightingale, K. P. (2013). Evaluating the use and impact of lecture recording in undergraduates: evidence for distinct approaches by different groups of students. Computers and Education, 61, 185–192.
Lin, T., & Chen, J. (2006). Cumulative class attendance and exam performance. Applied Economics Letters, 13(14), 937–942.
Lust, G., Vandewaetere, M., Ceulemans, E., Elen, J., & Clarebout, G. (2011). Tool-use in a blended undergraduate course: in search of user profiles. Computers and Education, 57, 2135–2144.
Lyons, A., Reyson, S., & Pierce, L. (2011). Video lecture format, student technological efficacy, and social presence in online courses. Computers in Human Behaviour, 28, 181–186.
McGarr, O. (2009). A review of podcasting in higher education: its influence on the traditional lecture. Australasian Journal of Educational Technology, 25(3), 309–321.
O’Flaherty, J., & Phillips, C. (2015). The use of flipped classrooms in higher education: a scoping review. Internet and Higher Education, 25, 85–95.
Oliver, R. (2008). Engaging first year students using a web-supported inquiry-based learning setting. Higher Education, 55, 285–301.
Onwuegbuzie, A. J., & Wilson, V. A. (2003). Statistics anxiety: nature, etiology, antecedents, effects and treatments—a comprehensive review of the literature. Teaching in Higher Education, 8(2), 195–209.
Owston, R., Lupshenyuk, D., & Wideman, H. (2011). Lecture capute in large underegraduate classes: student perceptions and academic performance. Internet and Higher Education, 14, 262–268.
Ozuorcun, N. C., & Tabak, F. (2012). Is M-learning versus E-learning or are they supporting each other? Procedia – Social and Behavioural Sciences, 46, 299–305.
Pearce, K., & Scutter, S. (2010). Podcasting of health sciences lectures: benefits for students from a non-English speaking background. Australasian Journal of Educational Technology, 26, 1028–1041.
Pinder-Grover, T., Green, K. R., & Millunchick, J. M. (2011). The efficacy of screencasts to address the diverse academic needs of students in a large lecture course (pp. 1–28). Winter: Advances in Engineering Education.
Prodanov, V. I. (2012). In-class lecture recording; What Lecture Capture has to Offer the Instructor. https://pdfs.semanticscholar.org/6814/4ee94290cd23e6925b4f4379a3b08c00f0e8.pdf?_ga=1.11246388.1419539888.1472092167. Accessed 2 May 2017.
Pye, G., Holt, D., Salzman, S., Bellucci, E., & Lombardi, L. (2015). Engaging diverse student audiences in contemporary blended learning environments in Australian higher business education: implications for design and practice. Australasian Journal of Information Systems, 19, 1–20.
Rodgers, J. R. (2001). A panel-data study of the effect of student attendance on university performance. Australian Journal of Education, 45(3), 284–295.
Romer, D. (1993). Do students go to class? Journal of Economic Perspectives, 7(3), 167–174.
Ross, T. K., & Bell, P. D. (2007). “No significant difference” only on the surface. International Journal of Instructional Technology and Distance Learning, 4(7), 3–13.
Soong, S. K. A., Chan, L. C. Cheers, C.,& Hu, C. (2006). Impact of video recorded lectures among students. Paper presented at the 23rd annual ascilite conference, Sydney, December 3.
Taplin, R. H., Kerr, R., & Brown, A. M. (2014). Opportunity costs associated with the provision of student services: a case study of web-based lecture technology. Higher Education, 68(1), 15–28.
Tynjala, P., Valimaa, J., & Sarja, A. (2003). Pedagogical perspectives on the relationship between higher education and working life. Higher Education, 46(2), 147–166.
Traphagan, T., Kucsera, J. V., & Kishi, K. (2010). Impact of class lecture webcasting on attendance and learning. Educational Technology Research and Development, 58(1), 19–37.
Trigwell, K., Prosser, M., & Waterhouse, F. (1999). Relations between teachers’ approaches to teaching and students’ approaches to learning. Higher Education, 37, 57–70.
von Konsky, B. R., Ivins, J., & Gribble, S. J. (2009). Lecture attendance and web based lecture technologies: a comparison of student perceptions and usage patterns. Australasian Journal of Educational Technology, 25(4), 581–595.
Wang, Y. S. (2003). Assessment of learner satisfaction with asynchronous electronic learning systems. Information Management, 41(4), 75–86.
Wieling, M. B., & Hofman, W. H. A. (2010). The impact of online video lecture recordings and automated feedback on student performance. Computers and Education, 54, 992–998.
Williams, J., & Fardon, M. (2007). Perpetual connectivity: lecture recordings and portable media players. Paper presented to the ASCILITE conference, Singapore, December 2-5.
Yen, J., & Lee, C. (2011). Exploring problem solving patterns and their impact on learning achievement in a blended learning environment. Computers and Education, 56, 138–145.
Young, J. R. (2008). The lectures are recorded, so why go to class? The Chronicle of Higher Education, 54(36), A1.
Yuan, L., & Powell, S. (2013). MOOCs and open education: implications for higher education. JISC CETIS. March 2013 http://publications.cetis.org.uk/2013/667.
Zhang, D., Zhou, L., Briggs, R. O., & Nunumaker Jr., J. F. (2006). Instructional video in e-learning: assessing the impact of interactive video on learning effectiveness. Information Management, 43(1), 15–27.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
O’Brien, M., Verma, R. How do first year students utilize different lecture resources?. High Educ 77, 155–172 (2019). https://doi.org/10.1007/s10734-018-0250-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10734-018-0250-5