Skip to main content

An adaptive large neighbourhood search algorithm for diameter bounded network design problems

Abstract

This paper focuses on designing a diameter - constrained network where the maximum distance between any pair of nodes is bounded. The objective considered is to minimise a weighted sum of the total length of the links followed by the total length of the paths between the pairs of nodes. First, the problem is formulated in terms of Mixed Integer Linear Programming and Constraint Programming to provide two alternative exact approaches. Then, an adaptive large neighbourhood search (LNS) to overcome memory and runtime limitations of the exact methods in large size instances is proposed. Such approach is based on computing an initial solution and repeatedly improve it by solving relatively small subproblems. We investigate various alternatives for finding an initial solution and propose two different heuristics for selecting subproblems. We have introduced a tighter lower bound, which demonstrates the quality of the solution obtained by the proposed approach. The performance of the proposed approach is assessed using three real-world network topologies from Ireland, UK and Italy, which are taken from national telecommunication operators and are used to design a transparent optical core network. Our results demonstrate that the LNS approach is scalable to large networks and it can compute very high quality solutions that are close to being optimal.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Azi, N., Gendreau, M., Potvin, J.: An adaptive large neighborhood search for a vehicle routing problem with multiple routes. Computers & OR 41, 167–173 (2014)

    MathSciNet  Article  Google Scholar 

  2. Barták, R., Zhou, N., Dovier, A.: Multiple-origin-multiple-destination path finding with minimal arc usage: Complexity and models. In: 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (2016)

  3. Bent, R., Van Hentenryck, P.: A two-stage hybrid algorithm for pickup and delivery vehicle routing problems with time windows. Comput. Oper. Res. 33(4), 875–893 (2006). https://doi.org/10.1016/j.cor.2004.08.001

    Article  MATH  Google Scholar 

  4. Chabrier, A., Danna, E., Le Pape, C., Perron, L.: Solving a network design problem. Annals OR 130(1–4), 217–239 (2004)

    MathSciNet  Article  Google Scholar 

  5. Chimani, M., Spoerhase, J.: Network design problems with bounded distances via shallow-light steiner trees. CoRR arXiv:1409.6551 (2014)

  6. CSPLib: A problem library for constraints. http://www.csplib.org (1999)

  7. De Backer, B., Furnon, V.: Meta-heuristics in constraint programming experiments with tabu search on the vehicle routing problem. In: 2nd International Conference on Metaheuristics (1997)

  8. de Camargo, R., de Miranda, G., Løkketangen, A.: A new formulation and an exact approach for the many-to-many hub location-routing problem. Applied Mathematical Modelling 37(12–13), 7465–7480 (2013) https://doi.org/10.1016/j.apm.2013.02.035. http://www.sciencedirect.com/science/article/pii/S0307904X1300142X

  9. Dijkstra, E.: A Note on Two Problems in Connection with Graphs. Numerische Mathematik 1(1), 269–271 (1959)

    MathSciNet  Article  Google Scholar 

  10. Discus: Deliverable 7.2, Preliminary quantitative results for flat optical network. Tech. rep., The DISCUS Project (FP7 Grant 318137) (2014)

  11. Dodis, Y., Khanna, S.: Designing networks with bounded pairwise distance. In: Proc. 21st Ann. ACM Symposium on Theory of Computing (STOC’99), pp. 750–759 (1999)

  12. Dooms, G., Deville, Y., Dupont, P.: Cp(graph): Introducing a graph computation domain in constraint programming. In: van Beek, P. (ed.) Principles and Practice of Constraint Programming - CP 2005, pp. 211–225. Springer, Berlin Heidelberg, Berlin, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Elias, J., Martignon, F., Carello, G.: Very large-scale neighborhood search algorithms for the design of service overlay networks. Telecommunication Systems 49(4), 391–408 (2012). https://doi.org/10.1007/s11235-010-9381-4

    Article  Google Scholar 

  14. Gelareh, S., Maculan, N., Mahey, P., Monemi, R.: Hub-and-spoke network design and fleet deployment for string planning of liner shipping. Applied Mathematical Modelling 37(5), 3307–3321 (2013) https://doi.org/10.1016/j.apm.2012.07.017. http://www.sciencedirect.com/science/article/pii/S0307904X12004295

  15. Gomes, C.: Computational sustainability: Computational methods for a sustainableenvironment, economy, and society. The Bridge 39(4), 5–13 (2009)

    Google Scholar 

  16. Gouveia, L., Paias, A., Sharma, D.: Modeling and solving the rooted distance-constrained minimum spanning tree problem. Computers & OR 35(2), 600–613 (2008). https://doi.org/10.1016/j.cor.2006.03.022

    MathSciNet  Article  MATH  Google Scholar 

  17. Gouveia, L., Simonetti, L., Uchoa, E.: Modeling hop-constrained and diameter-constrained minimum spanning tree problems as steiner tree problems over layered graphs. Math. Program. 128(1–2), 123–148 (2011). https://doi.org/10.1007/s10107-009-0297-2

    MathSciNet  Article  MATH  Google Scholar 

  18. Hurink, J.: An exponential neighborhood for a one-machine batching problem. OR Spectrum 21(4), 461–476 (1999). https://doi.org/10.1007/s002910050098

    MathSciNet  Article  MATH  Google Scholar 

  19. Kokangul, A., Ari, A.: Optimization of passive optical network planning. Applied Mathematical Modelling 35(7), 3345–3354 (2011) https://doi.org/10.1016/j.apm.2011.01.017. http://www.sciencedirect.com/science/article/pii/S0307904X11000308

  20. Kowalski, D., Nutov, Z., Segal, M.: Scheduling of vehicles in transportation networks. In: Vinel, A., Mehmood, R., Berbineau, M., Garcia, C., Huang, C.M., Chilamkurti, N. (eds.) Communication Technologies for Vehicles, pp. 124–136. Springer, Berlin Heidelberg (2012)

    Chapter  Google Scholar 

  21. Mahjoub, R., Simonetti, L., Uchoa, E.: Hop-level flow formulation for the survivable network design with hop constraints problem. Networks 61(2), 171–179 (2011)

    MathSciNet  Article  Google Scholar 

  22. Malitsky, Y., Mehta, D., O’Sullivan, B., Simonis, H.: Tuning parameters of large neighborhood search for the machine reassignment problem. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp. 176–192. Springer (2013)

  23. Medhi, D.: Network Routing: Algorithms, Protocols, and Architectures. Morgan Kaufmann, (2010)

  24. Mehta, D., O’Sullivan, B., Ozturk, C., Quesada, L.: An adaptive large neighbourhood search for designing transparent optical core network. In: Telecommunications (ConTEL), 2015 13th International Conference on, pp. 1–8 (2015). https://doi.org/10.1109/ConTEL.2015.7231187

  25. Mehta, D., O’Sullivan, B., Ozturk, C., Quesada, L., Simonis, H.: Designing an optical island in the core network: From routing to spectrum allocation. In: 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, pp. 560–567 (2014). https://doi.org/10.1109/ICTAI.2014.90

  26. Meyerson, A.: Online algorithms for network design. In: IN PROCEEDINGS OF THE 16TH ACM SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, pp. 275–280. ACM Press (2003)

  27. Miranda, G., Luna, H., de Camargo, R., Pinto, L.: Tree network design avoiding congestion. Applied Mathematical Modelling 35(9), 4175–4188 (2011) https://doi.org/10.1016/j.apm.2011.02.046. http://www.sciencedirect.com/science/article/pii/S0307904X1100117X

  28. Muller, L., Spoorendonk, S.: A hybrid adaptive large neighborhood search algorithm applied to a lot-sizing problem. DTU Management 2010. DTU Management (2010)

  29. Oh, J., Pyo, I., Pedram, M.: Constructing minimal spanning/steiner trees with bounded path length. Integration 22(1–2), 137–163 (1997)

    Article  Google Scholar 

  30. van Omme, N., Perron, L., Furnon, V.: or-tools user’s manual. Tech. rep., Google (2014)

  31. Payne, D.: FTTP deployment options and economic challenges. In: Proceedings of the 36th European Conference and Exhibition on Optical Communication (ECOC 2009) (2009)

  32. Pisinger, D., Ropke, S.: Large neighborhood search. In: Handbook of metaheuristics, pp. 399–419. Springer US (2010)

  33. Prud’homme, C., Fages, J., Lorca, X.: Choco3 Documentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2014). http://www.choco-solver.org

  34. Régin, J.C.: Global constraints: A survey. In: van Hentenryck, P., Milano, M. (eds.) Hybrid Optimization: The Ten Years of CPAIOR, pp. 63–134. Springer, New York, New York, NY (2011)

    Chapter  Google Scholar 

  35. Ruffini, M., Wosinska, L., Achouche, M., Chen, J., Doran, N., Farjady, F., Montalvo, J., Ossieur, P., O’Sullivan, B., Parsons, N., Pfeiffer, T., Qiu, X., Raack, C., Rohde, H., Schiano, M., Townsend, P., Wessaly, R., Yin, X., Payne, D.: Discus: an end-to-end solution for ubiquitous broadband optical access. Communications Magazine, IEEE 52(2), S24–S32 (2014). https://doi.org/10.1109/MCOM.2014.6736741

    Article  Google Scholar 

  36. Ruthmair, M., Raidl, G.: A kruskal-based heuristic for the rooted delay-constrained minimum spanning tree problem. In: Computer Aided Systems Theory-EUROCAST 2009, pp. 713–720. Springer (2009)

  37. Ziegelmann, M.: Constrained Shortest Paths and Related Problems - Constrained Network Optimization. VDM Verlag, Saarbrücken, Germany, Germany (2007)

Download references

Acknowledgements

The authors acknowledge both Eircom and Telecom Italia for providing network data. This work was supported by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 318137 (DISCUS), and Science Foundation Ireland (SFI) under grant numbers 12/RC/2289 (Insight P2), 16/SP/3804 (ENABLE), and 16/RC/3918 (CONFIRM).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cemalettin Ozturk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garraffa, M., Mehta, D., O’Sullivan, B. et al. An adaptive large neighbourhood search algorithm for diameter bounded network design problems. J Heuristics 27, 887–922 (2021). https://doi.org/10.1007/s10732-021-09481-1

Download citation

Keywords

  • Diameter bounded network design
  • Mixed integer linear programming
  • Constraint programming
  • Large neighbourhood search
  • Optical networks