IoT networks 3D deployment using hybrid many-objective optimization algorithms

Abstract

When resolving many-objective problems, multi-objective optimization algorithms encounter several difficulties degrading their performances. These difficulties may concern the exponential execution time, the effectiveness of the mutation and recombination operators or finding the tradeoff between diversity and convergence. In this paper, the issue of 3D redeploying in indoor the connected objects (or nodes) in the Internet of Things collection networks (formerly known as wireless sensor nodes) is investigated. The aim is to determine the ideal locations of the objects to be added to enhance an initial deployment while satisfying antagonist objectives and constraints. In this regard, a first proposed contribution aim to introduce an hybrid model that includes many-objective optimization algorithms relying on decomposition (MOEA/D, MOEA/DD) and reference points (Two_Arch2, NSGA-III) while using two strategies for introducing the preferences (PI-EMO-PC) and the dimensionality reduction (MVU-PCA). This hybridization aims to combine the algorithms advantages for resolving the many-objective issues. The second contribution concerns prototyping and deploying real connected objects which allows assessing the performance of the proposed hybrid scheme on a real world environment. The obtained experimental and numerical results show the efficiency of the suggested hybridization scheme against the original algorithms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Notes

  1. 1.

    Color should be used for Fig. 7 in print.

References

  1. Argany, M., Karimipour, F., Mafi, F., Afghantoloee, A.: Optimization of wireless sensor networks deployment based on probabilistic sensing models in a complex environment. J. Sens. Actuator Netw. 7(2), 20 (2018). https://doi.org/10.3390/jsan7020020

    Article  Google Scholar 

  2. Arduino platform: https://www.arduino.cc/en/main/software (2018). Accessed 5 Jan 2018

  3. Bechikh, S., Ben Said, L., Ghédira, K.: Searching for knee regions of the Pareto front using mobile reference points. Soft Comput. 15(9), 1807–1823 (2011). https://doi.org/10.1007/s00500-011-0694-3

    Article  Google Scholar 

  4. Branke, J., Deb, K., Miettinen, K., Slowinski, R.: Multiobjective Optimization: Interactive and Evolutionary Approaches. Springer, Berlin (2008)

    Google Scholar 

  5. Cheng, X., Du, D.Z., Wang, L., Xu, B.: Relay sensor placement in wireless sensor networks. ACM/Springer J. Wirel. Netw. 14(3), 347–355 (2008). https://doi.org/10.1007/s11276-006-0724-8

    Article  Google Scholar 

  6. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference point- based non-dominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. Evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Advanced Information and Knowledge Processing, pp. 105–145. Springer, London (2005)

    Google Scholar 

  8. Deb, K., Chaudhuri, S., Miettinen, K. Towards estimating nadir objective vector using evolutionary approaches. In: 8th Genetic and Evolutionary Computation Conference (GECCO), pp. 643–650 (2006). https://doi.org/10.1145/1143997.1144113

  9. Domingo-Perez, F., Lazaro-Galilea, J.L., Bravo, I., Gardel, A., Rodriguez, D.: Optimization of the coverage and accuracy of an indoor positioning system with a variable number of sensors. Sensors (Basel, Switzerland) 16(6), 934 (2016). https://doi.org/10.3390/s16060934

    Article  Google Scholar 

  10. Drechsler, N., Sülflow, A., Drechsler, R.: Incorporating user preferences in many-objective optimization using relation e-preferred. Nat. Comput. 14, 469 (2015). https://doi.org/10.1007/s11047-014-9422-0

    MathSciNet  Article  Google Scholar 

  11. Elhabyan, R., Shi, W., St-Hilaire, M.: Coverage protocols for wireless sensor networks: review and future directions. J. Commun. Netw. 21(1), 45–60 (2019). https://doi.org/10.1109/JCN.2019.000005

    Article  Google Scholar 

  12. Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension—sweep algorithm for the hypervolume indicator. In: Congress on Evolutionary Computation, pp. 1157–1163. IEEE Press, Piscataway (2006). https://doi.org/10.1109/CEC.2006.1688440

  13. Gong, D., Wang, G., Sun, X.: Set-based genetic algorithms for solving many-objective optimization problems. In: 13th UK Workshop on Computational Intelligence (UKCI), Guildford, pp. 96–103 (2013). https://doi.org/10.1109/UKCI.2013.6651293

  14. Guo, J., Jafarkhani, H.: Movement-efficient sensor deployment in wireless sensor networks with limited communication range. IEEE Trans. Wirel. Commun. 18(7), 3469–3484 (2019). https://doi.org/10.1109/TWC.2019.2914199

    Article  Google Scholar 

  15. Huang, B., Liu, W., Wang, T., Li, X., Song, H., Liu, A.: Deployment optimization of data centers in vehicular networks. IEEE Access 7, 20644–20663 (2019a). https://doi.org/10.1109/ACCESS.2019.2897615

    Article  Google Scholar 

  16. Huang, X., Cheng, S., Cao, K., Cong, P., Wei, T., Hu, S.: A survey of deployment solutions and optimization strategies for hybrid SDN networks. IEEE Commun. Surv. Tutor. 21(2), 1483–1507 (2019b). https://doi.org/10.1109/COMST.2018.2871061

    Article  Google Scholar 

  17. Ishibuchi, H., Akedo, N., Nojima, Y.: EMO algorithms on correlated many-objective problems with different correlation strength. World Automation Congress 2012, Puerto Vallarta, Mexico, pp. 1–6 (2012)

  18. IoTLab platform: https://www.iot-lab.info (2019). Accessed 22 June 2019

  19. Ko, A.H.R., Gagnon, F.: Process of 3D wireless decentralized sensor deployment using parsing crossover scheme. Appl. Comput. Inform. 11(2), 89–101 (2015). https://doi.org/10.1016/j.aci.2014.11.001

    Article  Google Scholar 

  20. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015). https://doi.org/10.1109/TEVC.2014.2373386

    Article  Google Scholar 

  21. Liu, X., Qui, T., Zhou, X., Wang, T., Yang, L., Chang, V.: Latency-aware anchor-point deployment for disconnected sensor networks with mobile sinks. IEEE Trans. Ind. Inf. (2019). https://doi.org/10.1109/TII.2019.2916300

    Article  Google Scholar 

  22. Luo, X., Li, X., Wang, J., Guan, X.: Potential-game based optimally rigid topology control in wireless sensor networks. IEEE Access 6, 16599–16609 (2018). https://doi.org/10.1109/ACCESS.2018.2814079

    Article  Google Scholar 

  23. Mitra, P., Murthy, C.A., Pal, S.K.: Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 301–312 (2002). https://doi.org/10.1109/34.990133

    Article  Google Scholar 

  24. Mnasri, S., Nasri, N., Van Den Bossche, A., Val, T.: The 3D deployment multi-objective problem in mobile WSN: optimizing coverage and localization. Int. Res. J Innov. Eng. (IRJIE) 1(5), 1–14 (2015)

    Google Scholar 

  25. Mnasri, S., Nasri, N., Van Den Bossche, A., Val, T.: A hybrid ant-genetic algorithm to solve a real deployment problem: a case study with experimental validation. In: Puliafito, A., Bruneo, D., Distefano, S., Longo, F. (eds.) Ad hoc, Mobile, and Wireless Networks. ADHOC-NOW 2017. Lecture Notes in Computer Science, vol. 10517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67910-5_30

    Google Scholar 

  26. Mnasri, S., Nasri, N., Van Den Bossche, A., Val, T.: 3D indoor redeployment in IoT collection networks: a real prototyping using a hybrid PI-NSGA-III-VF. In: The 14th International Wireless Communications and Mobile Computing Conference IWCMC 2018, pp. 780–785 (2018)

  27. Qu, B.Y., Suganthan, P.N., Liang, J.J.: Differential evolution with neighborhood mutation for multimodal optimization. IEEE Trans. Evol. Comput. 16(5), 601–614 (2012). https://doi.org/10.1109/TEVC.2011.2161873

    Article  Google Scholar 

  28. Rostami, S.: Preference focussed many-objective evolutionary computation. Ph.D. dissertation (chapter 2), School of Engineering, Manchester Metropolitan University, Manchester, UK, M15 6HB (2014)

  29. Saul, L.K., Weinberger, K.Q., Ham, J.H., Sha, F., Lee, D.D.: Spectral methods for dimensionality reduction. In: Schoelkopf, O.C.B., Zien, A. (eds.) Semisupervised Learning. MIT Press, Cambridge (2006)

    Google Scholar 

  30. Savkin, A.V., Huang, H.: A method for optimized deployment of a network of surveillance aerial drones. IEEE Syst. J. (2019). https://doi.org/10.1109/jsyst.2019.2910080

    Article  Google Scholar 

  31. Saxena, D.K., Duro, J.A., Tiwari, A., Deb, K., Zhang, Q.: Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans. Evol. Comput. 17(1), 77–99 (2013). https://doi.org/10.1109/TEVC.2012.2185847

    Article  Google Scholar 

  32. Shlens, J.: A tutorial on principal component analysis. Center for Neural Science, New York University, Tech. Rep (2009)

  33. Sinha, A., Korhonen, P., Wallenius, J., Deb, K.: An improved progressively interactive evolutionary multi-objective optimization algorithm with a fixed budget of decision maker calls. Eur. J. Oper. Res. 233(3), 674–688 (2014). https://doi.org/10.1016/j.ejor.2013.08.046

    Article  MATH  Google Scholar 

  34. Sinha, A., Saxena, D.K., Deb, K., Tiwari, A.: Using objective reduction and interactive procedure to handle many-objective optimization problems. Appl. Soft Comput. 13(1), 415–427 (2013). https://doi.org/10.1016/j.asoc.2012.08.030

    Article  Google Scholar 

  35. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017). https://doi.org/10.1109/MCI.2017.2742868

    Article  Google Scholar 

  36. Tsang, Y.P., Choy, K.L., Wu, C.H., Ho, G.T.S.: Multi-objective mapping method for 3D environmental sensor network deployment. IEEE Commun. Lett. 23(7), 1231–1235 (2019). https://doi.org/10.1109/LCOMM.2019.2914440

    Article  Google Scholar 

  37. Van den Bossche, A., Dalce, R., Val, T.: OpenWiNo: an open hardware and software framework for fast-prototyping in the IoT. In: 23rd International Conference on Telecommunications, Thessaloniki, Greece, pp. 1–6 (2016). https://doi.org/10.1109/ICT.2016.7500490

  38. Wang, H., Jiao, L., Yao, X.: Two_Arch2: an improved two-archive algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(4), 524–541 (2015). https://doi.org/10.1109/TEVC.2014.2350987

    Article  Google Scholar 

  39. Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite programming. Int. J. Comput. Vis. 70(1), 77–90 (2006). https://doi.org/10.1109/CVPR.2004.1315272

    Article  Google Scholar 

  40. Xu, H., Lai, Z., Liang, H.: A novel mathematical morphology based antenna deployment scheme for indoor wireless coverage. In: IEEE 80th Vehicular Technology Conference (VTC Fall), pp. 1–5 (2014). https://doi.org/10.1109/VTCFall.2014.6965828

  41. Yuan, Y., Xu, H., Wang, B., Zhang, B., Yao, X.: Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans. Evol. Comput. 20(2), 180–198 (2016). https://doi.org/10.1109/TEVC.2015.2443001

    Article  Google Scholar 

  42. Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2015). https://doi.org/10.1109/TEVC.2014.2378512

    Article  Google Scholar 

  43. Zhang, H., Liu, Y., Zhou, J.: Balanced-evolution genetic algorithm for combinatorial optimization problems: the general outline and implementation of balanced evolution strategy based on linear diversity index. Nat. Comput. (2018). https://doi.org/10.1007/s11047-018-9670-5

    MathSciNet  Article  Google Scholar 

Download references

Funding

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sami Mnasri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 808 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mnasri, S., Nasri, N., Alrashidi, M. et al. IoT networks 3D deployment using hybrid many-objective optimization algorithms. J Heuristics 26, 663–709 (2020). https://doi.org/10.1007/s10732-020-09445-x

Download citation

Keywords

  • IoT collection networks
  • 3D indoor redeployment
  • Experimental validation
  • Many-objective optimization
  • Preference incorporation
  • Dimensionality reduction