Bilevel optimization based on iterative approximation of multiple mappings

Abstract

A large number of application problems involve two levels of optimization, where one optimization task is nested inside the other. These problems are known as bilevel optimization problems and have been studied by both classical optimization community and evolutionary optimization community. Most of the solution procedures proposed until now are either computationally very expensive or applicable to only small classes of bilevel optimization problems adhering to mathematically simplifying assumptions. In this paper, we propose an evolutionary optimization method that tries to reduce the computational expense by iteratively approximating two important mappings in bilevel optimization; namely, the lower level rational reaction mapping and the lower level optimal value function mapping. The algorithm has been tested on a large number of test problems and comparisons have been performed with other algorithms. The results show the performance gain to be quite significant. To the best knowledge of the authors, a combined theory-based and population-based solution procedure utilizing mappings has not been suggested yet for bilevel problems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Notes

  1. 1.

    In case of upper level constraints containing both upper and lower level variables, one can find it difficult to arrive at a \((x_u^{(i)},x_l^{(i)})\) pair that is feasible with respect to all the constraints and the lower level vector is optimal for the given upper level vector. Many formulations of bilevel optimization, therefore, do not consider lower level variables in upper level constraints.

References

  1. Al-Khayyal, F., Horst, R., Pardalos, P.: Global optimization of concave functions subject to quadratic constraints: an application in nonlinear bilevel programming. Ann. Oper. Res. 34, 125–147 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Albrecht, S., Ramirez-Amaro, K., Ruiz-Ugalde, F, Weikersdorfer, D., Leibold, M., Ulbrich, M., Beetz, M.: Imitating human reaching motions using physically inspired optimization principles. In: Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International Conference on, pp. 602–607. IEEE (2011)

  3. An, B., Ordóñez, F., Tambe, M., Shieh, E., Yang, R., Baldwin, C., DiRenzo III, J., Moretti, K., Maule, B., Meyer, G.: A deployed quantal response-based patrol planning system for the US Coast Guard. Interfaces 43(5), 400–420 (2013)

    Google Scholar 

  4. Angelo, J., Krempser, E., Barbosa, H.: Differential evolution for bilevel programming. In: Proceedings of the 2013 Congress on Evolutionary Computation (CEC-2013). IEEE Press (2013)

  5. Angelo, J.S., Barbosa, H.J.C.: A study on the use of heuristics to solve a bilevel programming problem. Int. Trans. Oper. Res. (2015)

  6. Bard, J., Moore, J.: A branch and bound algorithm for the bilevel programming problem. SIAM J. Sci. Stat. Comput. 11, 281–292 (1990)

    MathSciNet  MATH  Google Scholar 

  7. Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Kluwer, The Netherlands (1998)

    Google Scholar 

  8. Ben-Ayed, O.: Bilevel linear programming. Comput. Oper. Res. 20, 485–501 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Bendsoe, M.P.: Optimization of structural topology, shape, and material. Technical report (1995)

  10. Bracken, J., McGill, J.: Mathematical programs with optimization problems in the constraints. Oper. Res. 21, 37–44 (1973)

    MathSciNet  MATH  Google Scholar 

  11. Bracken, J., McGill, J.T.: Defense applications of mathematical programs with optimization problems in the constraints. Oper. Res. 22(5), 1086–1096 (1974)

    MathSciNet  MATH  Google Scholar 

  12. Brotcorne, L., Labbe, M., Marcotte, P., Savard, G.: A bilevel model for toll optimization on a multicommodity transportation network. Transp. Sci. 35(4), 345–358 (2001)

    MATH  Google Scholar 

  13. Brown, G., Carlyle, M., Diehl, D., Kline, J., Wood, K.: A two-sided optimization for theater ballistic missile defense. Oper. Res. 53(5), 745–763 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Christiansen, S., Patriksson, M., Wynter, L.: Stochastic bilevel programming in structural optimization. Struct. Multidiscip. Optim. 21(5), 361–371 (2001)

    Google Scholar 

  15. Clark, P.A., Westerberg, A.W.: Bilevel programming for steady-state chemical process design—I. Fundamentals and algorithms. Comput. Chem. Eng. 14(1), 87–97 (1990)

    Google Scholar 

  16. Constantin, I., Florian, M.: Optimizing frequencies in a transit network: a nonlinear bi-level programming approach. Int. Trans. Oper. Res. 2(2), 149–164 (1995)

    MATH  Google Scholar 

  17. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)

    MATH  Google Scholar 

  18. Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm for real-parameter optimization. Evol. Comput. 10(4), 371–395 (2002)

    Google Scholar 

  19. Dempe, S., Dutta, J., Mordukhovich, B.S.: New necessary optimality conditions in optimistic bilevel programming. Optimization 56(5–6), 577–604 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Dempe, S.: Foundations of Bilevel Programming. Kluwer, Secaucus (2002)

    Google Scholar 

  21. Dempe, S., Mordukhovich, B.S., Zemkoho, A.B.: Necessary optimality conditions in pessimistic bilevel programming. Optimization 63(4), 505–533 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Edmunds, T., Bard, J.: Algorithms for nonlinear bilevel mathematical programming. IEEE Trans. Syst. Man Cybern. 21, 83–89 (1991)

    Google Scholar 

  23. Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques, vol. 4. SIAM, Philadelphia (1990)

    Google Scholar 

  24. Hejazi, S.R., Memariani, A., Jahanshahloo, G., Sepehri, M.M.: Linear bilevel programming solution by genetic algorithm. Comput. Oper. Res. 29(13), 1913–1925 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Hu, X., Ralph, D.: Using EPECs to model bilevel games in restructured electricity markets with locational prices. Oper. Res. 55(5), 809–827 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Islam, M.M., Singh, H.K., Ray, T.: A surrogate assisted approach for single-objective bilevel optimization. IEEE Trans. Evol. Comput. 21(5), 681–696 (2017a)

    Google Scholar 

  27. Islam, M.M., Singh, H.K., Ray, T., Sinha, A.: An enhanced memetic algorithm for single-objective bilevel optimization problems. Evol. Comput. 25(4), 607–642 (2017b)

    Google Scholar 

  28. Jiang, Y., Li, X., Huang, C., Xianing, W.: Application of particle swarm optimization based on chks smoothing function for solving nonlinear bilevel programming problem. Appl. Math. Comput. 219(9), 4332–4339 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Jin, Q., Feng, S.: Bi-level simulated annealing algorithm for facility location. Syst. Eng. 2, 007 (2007)

    Google Scholar 

  30. Jittorntrum, Krisorn: Solution point differentiability without strict complementarity in nonlinear programming. In: Sensitivity, Stability and Parametric Analysis, pp. 127–138. Springer, Berlin (1984)

    Google Scholar 

  31. Labbé, M., Marcotte, P., Savard, G.: A bilevel model of taxation and its application to optimal highway pricing. Manag. Sci. 44(12), 1608–1622 (1998)

    MATH  Google Scholar 

  32. Lei, T.L.: Identifying critical facilities in hub-and-spoke networks: a hub interdiction median problem. Geogr. Anal. 45(2), 105–122 (2013)

    Google Scholar 

  33. Li, H.: A genetic algorithm using a finite search space for solving nonlinear/linear fractional bilevel programming problems. Ann. Oper. Res., pp. 1–16 (2015)

  34. Li, H., Wang, Y.: A hybrid genetic algorithm for solving nonlinear bilevel programming problems based on the simplex method. Int. Conf. Nat. Comput. 4, 91–95 (2007)

    Google Scholar 

  35. Li, X., Tian, P., Min, X.: A hierarchical particle swarm optimization for solving bilevel programming problems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing—ICAISC 2006. Lecture Notes in Computer Science, vol. 4029, pp. 1169–1178. Springer, Berlin (2006)

    Google Scholar 

  36. Lignola, M.B., Morgan, J.: Existence of solutions to bilevel variational problems in banach spaces. In: Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, pp. 161–174. Springer, Berlin (2001)

  37. Liu, G., Han, J., Wang, S.: A trust region algorithm for bilevel programing problems. Chin. Sci. Bull. 43(10), 820–824 (1998)

    MATH  Google Scholar 

  38. Mathieu, R., Pittard, L., Anandalingam, G.: Genetic algorithm based approach to bi-level linear programming. Oper. Res. 28(1), 1–21 (1994)

    MathSciNet  MATH  Google Scholar 

  39. Migdalas, A.: Bilevel programming in traffic planning: models, methods and challenge. J. Glob. Optim. 7(4), 381–405 (1995)

    MathSciNet  MATH  Google Scholar 

  40. Mirrlees, J.A.: The theory of moral hazard and unobservable behaviour: Part I. Rev. Econ. Stud. 66(1), 3–21 (1999)

    MATH  Google Scholar 

  41. Mombaur, K., Truong, A., Laumond, J.-P.: From human to humanoid locomotion: an inverse optimal control approach. Auton. Robots 28(3), 369–383 (2010)

    Google Scholar 

  42. Nicholls, M.G.: Aluminium production modeling: a nonlinear bilevel programming approach. Oper. Res. 43(2), 208–218 (1995)

    MathSciNet  MATH  Google Scholar 

  43. Outrata, J.V.: A note on the usage of nondifferentiable exact penalties in some special optimization problems. Kybernetika 24(4), 251–258 (1988)

    MathSciNet  MATH  Google Scholar 

  44. Outrata, J.V.: On the numerical solution of a class of stackelberg problems. Z. Oper. Res. 34(4), 255–277 (1990)

    MathSciNet  MATH  Google Scholar 

  45. Ralph, D., Dempe, S.: Directional derivatives of the solution of a parametric nonlinear program. Math. Program. 70(1–3), 159–172 (1995)

    MathSciNet  MATH  Google Scholar 

  46. Rudolph, G.: Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Netw. 5(1), 96–101 (1994)

    MathSciNet  Google Scholar 

  47. Sinha, A., Malo, P., Deb, K.: Efficient evolutionary algorithm for single-objective bilevel optimization. (2013). arXiv preprint arXiv:1303.3901

  48. Sinha, A., Malo, P., Deb, K.: An improved bilevel evolutionary algorithm based on quadratic approximations. In: 2014 IEEE Congress on Evolutionary Computation (CEC-2014), pp. 1870–1877. IEEE Press (2014)

  49. Sinha, A., Malo, P., Deb, K.: Test problem construction for single-objective bilevel optimization. Evol. Comput. J. 22(3), 439–477 (2014)

    Google Scholar 

  50. Sinha, A., Malo, P., Deb, K.: Transportation policy formulation as a multi-objective bilevel optimization problem. In: 2015 IEEE Congress on Evolutionary Computation (CEC-2015). IEEE Press (2015)

  51. Sinha, A., Malo, P., Deb, K.: Evolutionary bilevel optimization: an introduction and recent advances. In: Bechikh, S., Dutta, R., Gupta, A. (eds.) Recent Advances in Evolutionary Multi-objective Optimization. Springer, Berlin (2016a)

    Google Scholar 

  52. Sinha, A., Malo, P., Deb, K.: Solving optimistic bilevel programs by iteratively approximating lower level optimal value function. In: 2016 IEEE Congress on Evolutionary Computation (CEC-2016). IEEE Press (2016b)

  53. Sinha, A., Malo, P., Deb, K.: Evolutionary algorithm for bilevel optimization using approximations of the lower level optimal solution mapping. Eur. J. Oper. Res. 257(2), 395–411 (2017)

    MathSciNet  MATH  Google Scholar 

  54. Sinha, A., Malo, P., Deb, K.: A review on bilevel optimization: from classical to evolutionary approaches and applications. IEEE Trans. Evol. Comput. 22(2), 276–295 (2018)

    Google Scholar 

  55. Sinha, A., Malo, P., Frantsev, A., Deb, K.: Multi-objective stackelberg game between a regulating authority and a mining company: a case study in environmental economics. In: 2013 IEEE Congress on Evolutionary Computation (CEC-2013). IEEE Press (2013)

  56. Sinha, A., Malo, P., Frantsev, A., Deb, K.: Finding optimal strategies in a multi-period multi-leader-follower stackelberg game using an evolutionary algorithm. Comput. Oper. Re. 41, 374–385 (2014)

    MathSciNet  MATH  Google Scholar 

  57. Sinha, A., Srinivasan, A., Deb, K.: A population-based, parent centric procedure for constrained real-parameter optimization. In: 2006 IEEE Congress on Evolutionary Computation (CEC-2006), pp. 239–245. IEEE Press (2006)

  58. Smith, W.R., Missen, R.W.: Chemical Reaction Equilibrium Analysis: Theory and Algorithms. Wiley, New York (1982)

    Google Scholar 

  59. Sun, H., Gao, Z., Jianjun, W.: A bi-level programming model and solution algorithm for the location of logistics distribution centers. Appl. Math. Model. 32(4), 610–616 (2008)

    MathSciNet  MATH  Google Scholar 

  60. Uno, T., Katagiri, H., Kato, K.: An evolutionary multi-agent based search method for stackelberg solutions of bilevel facility location problems. Int. J. Innov. Comput. Inf. Control 4(5), 1033–1042 (2008)

    Google Scholar 

  61. Vicente, L.N., Savard, G., Judice, J.J.: Descent approaches for quadratic bilevel programming. J. Optim. Theory Appl. 81(1), 379–399 (1994)

    MathSciNet  MATH  Google Scholar 

  62. Wan, Z., Wang, G., Sun, B.: A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving nonlinear bilevel programming problems. Swarm Evol. Comput. 8, 26–32 (2013)

    Google Scholar 

  63. Wang, Y., Jiao, Y.C., Li, H.: An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 32(2), 221–232 (2005)

    Google Scholar 

  64. Wang, Y., Li, H., Dang, C.: A new evolutionary algorithm for a class of nonlinear bilevel programming problems and its global convergence. INFORMS J. Comput. 23(4), 618–629 (2011)

    MathSciNet  MATH  Google Scholar 

  65. Wein, L.: Homeland security: from mathematical models to policy implementation—the 2008 Philip McCord Morse lecture. Oper. Res. 57(4), 801–811 (2009)

    Google Scholar 

  66. Wen, U., Hsu, S.: Linear bi-level programming problems: a review. J. Oper. Res. Soc. 42, 125–133 (1991)

    MATH  Google Scholar 

  67. Wiesemann, W., Tsoukalas, A., Kleniati, P.-M., Rustem, B.: Pessimistic bilevel optimization. SIAM J. Optim. 23(1), 353–380 (2013)

    MathSciNet  MATH  Google Scholar 

  68. Williams, N., Kannan, P.K., Azarm, S.: Retail channel structure impact on strategic engineering product design. Manag. Sci. 57(5), 897–914 (2011)

    Google Scholar 

  69. Ye, J.J., Zhu, D.: New necessary optimality conditions for bilevel programs by combining the mpec and value function approaches. SIAM J. Optim. 20(4), 1885–1905 (2010)

    MathSciNet  MATH  Google Scholar 

  70. Yin, Y.: Genetic algorithm based approach for bilevel programming models. J. Transp. Eng. 126(2), 115–120 (2000)

    Google Scholar 

  71. Zhu, X., Yu, Q., Wang, X.: A hybrid differential evolution algorithm for solving nonlinear bilevel programming with linear constraints. In: Cognitive Informatics, 2006. ICCI 2006. 5th IEEE International Conference on, vol. 1, pp. 126–131. IEEE (2006)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ankur Sinha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Standard test problems

In this section, we provide some of the standard bilevel test problems chosen from the literature. Most of these test problems are small with only small number of variables at both levels.

Appendix B: Additional SMD test problems

SMD test problems (Sinha et al. 2014) are a set of 12 scalable test problems that offer a variety of controllable difficulties to an algorithm. We add two more test problems to the previous test-suite in this paper (Table 12). Both these problems contain a difficult \(\varphi \)-mapping, among other difficulties. The upper and lower level functions follow the following structure to induce difficulties due to convergence, interaction, and function dependence between the two levels. The vectors \(x_u\) and \(x_l\) are further divided into two sub-vectors. The \(\varphi \)-mapping is defined by the function \(f_1\).

$$\begin{aligned} \begin{array}{l} F(x_u,x_l) = F_1(x_{u1}) + F_2(x_{l1}) + F_3(x_{u2},x_{l2}) \\ f(x_u,x_l) = f_1(x_{u1}, x_{u2}) + f_2(x_{l1}) + f_3(x_{u2},x_{l2})\\ \text{ where }\\ \quad \quad x_u = (x_{u1}, x_{u2}) \quad \text{ and } \quad x_l = (x_{l1}, x_{l2}) \end{array} \end{aligned}$$
(5)
Table 12 SMD Test Problems. (Note that \((x_{u1}, x_{u2}) = (a,b)\) and \((x_{l1}, x_{l2})=(c,d)\))

Appendix C: Stackelberg duopoly formulation

In this section, we provide the complete formulation of the Stackelberg duopoly problem. Each player produces 5 products. The profit functions for the leader and the follower involve both x and y, which means that the price of the product is influenced by the produce from both the leader and the follower. Each of the players have their own resource constraints that is provided by their respective constraints.

The bilevel optimum for the above problem is not readily available. Therefore, we solved the above problem multiple times using nested approach and then performed a refined grid search to locate the bilevel optimum. The best solution obtained has been provided below. The decision vectors have been rounded to three decimal digits and the function values have been rounded to two decimal digits.

$$\begin{aligned} (x_1, x_2, x_3, x_4, x_5)^{*}= & {} (12.016, 9.333, 15.667, 10.625, 9.375),\\ (y_1, y_2, y_3, y_4, y_5)^{*}= & {} (8.868, 6.132, 9.868, 5.000, 2.656),\\ \Pi _u (x,y)^{*}= & {} 1684.10,\\ \Pi _l (x,y)^{*}= & {} 490.77. \end{aligned}$$
Table 13 Median function evaluations on TP test suite

Appendix D: Additional results

In this section, we provide results for all the test problems with the variance-based termination criterion through Tables 13, 14 and 15. The termination parameters used for the runs are \(\alpha _{u}^{stop} = \alpha _{l}^{stop} = 10^{-5}\). Once an algorithm terminates based on the variance-based termination criterion, the best point reported by the algorithm is compared with the true bilevel optimum, and the run is considered successful only if the objective function accuracy of \(10^{-2}\) is achieved at both levels.

Table 14 Median function evaluations on low dimension SMD test suite
Table 15 Median function evaluations on high dimension SMD test suite

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sinha, A., Lu, Z., Deb, K. et al. Bilevel optimization based on iterative approximation of multiple mappings. J Heuristics 26, 151–185 (2020). https://doi.org/10.1007/s10732-019-09426-9

Download citation

Keywords

  • Bilevel optimization
  • Evolutionary algorithms
  • Stackelberg games
  • Mathematical programming