Skip to main content

A reactive GRASP metaheuristic for the container retrieval problem to reduce crane’s working time

Abstract

The container retrieval problem (CRP) is a very important issue for container terminals. The CRP seeks to find an optimal sequence of operations for the crane to retrieve all the containers from the bay according to a predefined order. An optimal sequence of operations is obtained by either reducing the number of container relocations or reducing any kind of working cost performed by the crane, i.e., energy, time, etc. Although the former is the main objective function discussed in the literature, minimizing the number of relocations does not ensure the solution with the minimal working cost, as evidenced in this paper. Therefore, in this study, a crane’s trajectory is defined to better measure the crane’s working cost, and the optimization goal is to minimize the crane’s working time considering the crane’s trajectory. Moreover, it proposes exact methods and a reactive GRASP algorithm for the CRP. The experimental results show that the proposed algorithm is able to provide better solutions for both the number of container relocations and the crane’s working time, when compared to heuristic approaches in the recent literature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Azari, E.: Notes on “A mathematical formulation and complexity considerations for the blocks relocation problem”. Sci. Iran. 22(6), 2722–2728 (2015)

    Google Scholar 

  2. Carlo, H.J., Vis, I.F., Roodbergen, K.J.: Storage yard operations in container terminals: literature overview, trends, and research directions. Eur. J. Oper. Res. 235(2), 412–430 (2014). https://doi.org/10.1016/j.ejor.2013.10.054

    MATH  Article  Google Scholar 

  3. Carraro, L.A., De Castro L.N.: A clonal selection algorithm for the container stacking problem. In: Proceedings of the 2011 3rd World Congress on Nature and Biologically Inspired Computing, pp 569–574. IEEE (2011). https://doi.org/10.1109/NaBIC.2011.6089651

  4. Caserta, M., Voß, S., Sniedovich, M.: Applying the corridor method to a blocks relocation problem. OR Spectr. 33(4), 915–929 (2011). https://doi.org/10.1007/s00291-009-0176-5

    MathSciNet  MATH  Article  Google Scholar 

  5. Caserta, M., Schwarze, S., Voß, S.: A mathematical formulation and complexity considerations for the blocks relocation problem. Eur. J. Oper. Res. 219(1), 96–104 (2012). https://doi.org/10.1016/j.ejor.2011.12.039

    MathSciNet  MATH  Article  Google Scholar 

  6. Casey, B., Kozan, E.: Optimising container storage processes at multimodal terminals. J. Oper. Res. Soc. 63(8), 1126–1142 (2012). https://doi.org/10.1016/S0895-7177(00)00092-3

    Article  Google Scholar 

  7. Deng, Y., Bard, J.F.: A reactive grasp with path relinking for capacitated clustering. J. Heuristics 17(2), 119–152 (2011). https://doi.org/10.1007/s10732-010-9129-z

    MATH  Article  Google Scholar 

  8. de Melo da Silva M, Erdoğan, G., Battarra, M., Strusevich V.: The block retrieval problem. Eur. J. Oper. Res. 265(3), 931–950 (2018). https://doi.org/10.1016/j.ejor.2017.08.048

  9. Expósito-Izquierdo, C., Melián-Batista, B., Moreno-Vega, J.M.: Pre-marshalling problem: heuristic solution method and instances generator. Expert Syst. Appl. 39(9), 8337–8349 (2012). https://doi.org/10.1016/j.eswa.2012.01.187

    Article  Google Scholar 

  10. Expósito-Izquierdo, C., Melián-Batista, B., Moreno-Vega, J.M.: A domain-specific knowledge-based heuristic for the blocks relocation problem. Adv. Eng. Inform. 28(4), 327–343 (2014). https://doi.org/10.1016/j.aei.2014.03.003

    Article  Google Scholar 

  11. Expósito-Izquierdo, C., Melián-Batista, B., Moreno-Vega, J.M.: An exact approach for the blocks relocation problem. Expert Syst. Appl. 42(17–18), 6408–6422 (2015). https://doi.org/10.1016/j.eswa.2015.04.021

    Article  Google Scholar 

  12. Firmino, A.S., Silva, R.M.A., Times, V.C.: An exact approach for the container retrieval problem to reduce crane’s trajectory. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp 933–938 (2016a). https://doi.org/10.1109/itsc.2016.7795667

  13. Firmino, A.S., Times, V.C., Silva, R.M.A., Mateus, G.R.: Reactive grasp with path relinking for selecting olap views. In: XLVIII SBPO (2016) (2016b). www.sbpo2016.iltc.br/pdf/156026.pdf

  14. Forster, F., Bortfeldt, A.: A tree search heuristic for the container retrieval problem. In: Klatte D, Lüthi HJ, Schmedders K (eds) Operations Research Proceedings 2011 SE - 41, Operations Research Proceedings, pp. 257–262. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-29210-1_41

  15. Galle, V., Barnhart, C., Jaillet, P.: A new binary formulation of the restricted container relocation problem based on a binary encoding of configurations. Eur. J. Oper. Res. 267, 467–477 (2018). https://doi.org/10.1016/j.ejor.2017.11.053

    MathSciNet  MATH  Article  Google Scholar 

  16. Hakan Akyüz, M., Lee, C.Y.: A mathematical formulation and efficient heuristics for the dynamic container relocation problem. Nav. Res. Logist. 61(2), 101–118 (2014). https://doi.org/10.1002/nav.21569

    MathSciNet  Article  MATH  Google Scholar 

  17. Hussein, M., Petering, M.E.H.: Genetic algorithm-based simulation optimization of stacking algorithms for yard cranes to reduce fuel consumption at seaport container transshipment terminals. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012). https://doi.org/10.1109/CEC.2012.6256471

  18. Jin, B., Zhu, W., Lim, A.: Solving the container relocation problem by an improved greedy look-ahead heuristic. Eur. J. Oper. Res. 240(3), 837–847 (2015). https://doi.org/10.1016/j.ejor.2014.07.038

    MathSciNet  MATH  Article  Google Scholar 

  19. Jovanovic, R., Voß, S.: A chain heuristic for the blocks relocation problem. Comput. Ind. Eng. 75, 79–86 (2014). https://doi.org/10.1016/j.cie.2014.06.010

    Article  Google Scholar 

  20. Kim, K.H., Hong, G.P.: A heuristic rule for relocating blocks. Comput. Oper. Res. 33(4), 940–954 (2006). https://doi.org/10.1016/j.cor.2004.08.005

    MathSciNet  MATH  Article  Google Scholar 

  21. Kim, Y., Kim, T., Lee, H.: Heuristic algorithm for retrieving containers. Comput. Ind. Eng. (2016). https://doi.org/10.1016/j.cie.2016.08.022

    Article  Google Scholar 

  22. Ku, D., Arthanari, T.S.: On the abstraction method for the container relocation problem. Comput. Oper. Res. 68, 110–122 (2016). https://doi.org/10.1016/j.cor.2015.11.006

    MathSciNet  MATH  Article  Google Scholar 

  23. Lee, Y., Lee, Y.J.: A heuristic for retrieving containers from a yard. Comput. Oper. Res. 37(6), 1139–1147 (2010). https://doi.org/10.1016/j.cor.2009.10.005

    MATH  Article  Google Scholar 

  24. Li, J., Yu, H.X.: Optimizing retrieval sequencing in container yards. In: Proceedings—2010 International Conference on Optoelectronics and Image Processing, IEEE, vol. 2, pp. 90–92 (2010). https://doi.org/10.1109/ICOIP.2010.236

  25. Lin, D.Y., Lee, Y.J., Lee, Y.: The container retrieval problem with respect to relocation. Transp. Res. C Emerg. Technol. 52, 132–143 (2015). https://doi.org/10.1016/j.trc.2015.01.024

    Article  Google Scholar 

  26. Murty, K.G., Liu, J., Yw, Wan, Linn, R.: A decision support system for operations in a container terminal. Decis. Support Syst. 39(3), 309–332 (2005). https://doi.org/10.1016/j.dss.2003.11.002

    Article  Google Scholar 

  27. Olsen, M., Gross, A.: Average case analysis of blocks relocation heuristics. In: González-Ramírez, R.G., Schulte, F., Voß, S., Ceroni Díaz, J.A. (eds.) Computational Logistics. ICCL 2014, pp. 81–92. Springer International Publishing (2014). https://doi.org/10.1007/978-3-319-11421-7_6

  28. Petering, M.E., Hussein, M.I.: A new mixed integer program and extended look-ahead heuristic algorithm for the block relocation problem. Eur. J. Oper. Res. 231(1), 120–130 (2013). https://doi.org/10.1016/j.ejor.2013.05.037

    MATH  Article  Google Scholar 

  29. Resende, M., Ribeiro, C.: Optimization by GRASP: Greedy Randomized Adaptive Search Procedures. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-6530-4

    MATH  Book  Google Scholar 

  30. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 4th edn. Chapman & Hall/CRC, Boca Raton (2007)

    MATH  Google Scholar 

  31. Tanaka, S., Takii, K.: A faster branch-and-bound algorithm for the block relocation problem. Autom. Sci. Eng. 13(1), 181–190 (2016). https://doi.org/10.1109/TASE.2015.2434417

    Article  Google Scholar 

  32. Ting, C.J., Wu, K.C.: Optimizing container relocation operations at container yards with beam search. Transp. Res. E Logist. Transp. Rev. 103, 17–31 (2017). https://doi.org/10.1016/j.tre.2017.04.010

    Article  Google Scholar 

  33. Tricoire, F., Scagnetti, J., Beham, A.: New insights on the block relocation problem. Comput. Oper. Res. 89, 127–139 (2018). https://doi.org/10.1016/J.COR.2017.08.010

    MathSciNet  MATH  Article  Google Scholar 

  34. Ünlüyurt, T., Aydin, C.: Improved rehandling strategies for the container retrieval process. J. Adv. Transp. 46(4), 378–393 (2012). https://doi.org/10.1002/atr.1193

    Article  Google Scholar 

  35. Wan, Y., Liu, J., Tsai, P.C.: The assignment of storage locations to containers for a container stack. Nav. Res. Logist. 56(8), 699–713 (2009). https://doi.org/10.1002/nav.20373

    MathSciNet  MATH  Article  Google Scholar 

  36. World Bank: Container port traffic (teu: 20 foot equivalent units) (2018). http://data.worldbank.org/indicator/IS.SHP.GOOD.TU?end=2018&start=2000. Accessed 04 June 2018

  37. Wu, K.C., Ting, C.J.: A beam search algorithm for minimizing reshuffle operations at container yards. In: International Conference on Logistics and Maritime Systems, pp. 15–17 (2010)

  38. Wu, K.C., Ting, C.J.: Heuristic approaches for minimizing reshuffle operations at container yard. In: Kachitvichyanukul, V., Luong, H.T., Pitakaso, R. (eds.) Asia Pacific Industrial Engineering and Management Systems Conference, pp. 1407–1415 (2012)

  39. Zehendner, E., Caserta, M., Feillet, D., Schwarze, S., Voß, S.: An improved mathematical formulation for the blocks relocation problem. Eur. J. Oper. Res. 245(2), 415–422 (2015). https://doi.org/10.1016/j.ejor.2015.03.032

    MathSciNet  MATH  Article  Google Scholar 

  40. Zhang, C.: Resource planning in container storage yard. Ph.D. thesis, Hong Kong University of Science and Technology (2000)

  41. Zhang, H., Guo, S., Zhu, W., Lim, A., Cheang, B.: An investigation of ida* algorithms for the container relocation problem. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) Trends in Applied Intelligent Systems SE - 4, Lecture Notes in Computer Science, vol. 6096, pp. 31–40. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-13022-9_4

  42. Zhu, W., Qin, H., Lim, A., Zhang, H.: Iterative deepening a* algorithms for the container relocation problem. Autom. Sci. Eng. 9(4), 710–722 (2012). https://doi.org/10.1109/TASE.2012.2198642

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andresson da Silva Firmino.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva Firmino, A., de Abreu Silva, R.M. & Times, V.C. A reactive GRASP metaheuristic for the container retrieval problem to reduce crane’s working time. J Heuristics 25, 141–173 (2019). https://doi.org/10.1007/s10732-018-9390-0

Download citation

Keywords

  • Reactive GRASP
  • Container retrieval problem
  • Metaheuristics
  • Optimization model
  • Container terminal logistic