Skip to main content

A comparison of acceptance criteria for the adaptive large neighbourhood search metaheuristic

Abstract

Adaptive large neighborhood search (ALNS) is a useful framework for solving difficult combinatorial optimisation problems. As a metaheuristic, it consists of some components that must be tailored to the specific optimisation problem that is being solved, while other components are problem independent. The literature is sparse with respect to studies that aim to evaluate the relative merit of different alternatives for specific problem independent components. This paper investigates one such component, the move acceptance criterion in ALNS, and compares a range of alternatives. Through extensive computational testing, the alternative move acceptance criteria are ranked in three groups, depending on the performance of the resulting ALNS implementations. Among the best variants, we find versions of criteria based on simulated annealing, threshold acceptance, and record-to-record travel, with a version of the latter being consistently undominated by the others. Additional analyses focus on the search behavior, and multiple linear regression is used to identify characteristics of search behavior that are associated with good search performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Beasley, J.: Or-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990)

    Article  Google Scholar 

  2. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated f-race: an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer, Berlin (2010)

    Chapter  Google Scholar 

  3. Burak, B., Özcan, E., Korkmaz, E.E.: An experimental study on hyper-heuristics and exam timetabling. In: International Conference on the Practice and Theory of Automated Timetabling, pp 394–412. Springer, Berlin (2006)

  4. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB—a quadratic assignment problem library. J. Global Optim. 10(4), 391–403 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  5. Burke, E.K., Bykov, Y.: A late acceptance strategy in hill-climbing for exam timetabling problems. In: PATAT 2008 Conference, Montreal, Canada (2008)

  6. Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuristic. Technical Report CSM-192, University of Stirling, Technical Report (2012)

  7. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)

    Article  Google Scholar 

  8. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In: Mingozzi, A., Toth, P., Sandi, C., Christofides, N. (eds.) Combinatorial Optimization, pp. 315–338. Wiley, New York (1979)

    Google Scholar 

  9. Connolly, D.: General purpose simulated annealing. J. Oper. Res. Soc. 43(5), 495–505 (1992)

    Article  MATH  Google Scholar 

  10. Demir, E., Bektaş, T., Laporte, G.: An adaptive large neighborhood search heuristic for the pollution-routing problem. Eur. J. Oper. Res. 223(2), 346–359 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  11. Dueck, G.: New optimization heuristics: the great deluge algorithm and the record-to-record travel. J. Comput. Phys. 104, 86–92 (1993)

    Article  MATH  Google Scholar 

  12. Dueck, G., Scheuer, T.: Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J. Comput. Phys. 90, 161–175 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  13. Furini, F., Malaguti, E., Santini, A.: An exact algorithm for the Partition Coloring Problem. Comput. Oper. Res. 1–17 (2017) (submitted)

  14. Glover, F.: Multi-start and strategic oscillation methods principles to exploit adaptive memory. In: Laguna, M., Velarde, J.L.G. (eds.) Computing Tools for Modeling, Optimization and Simulation, Operations Research/Computer Science Interfaces Series, vol. 12, pp. 1–24. Springer, Boston, MA (2000)

    Chapter  Google Scholar 

  15. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publisher, Dordrecht (1997)

    Book  MATH  Google Scholar 

  16. Golden, B.L., Wasil, E.A., Kelly, J.P., Chao, I.M., Crainic, T.: The impact of metaheuristics on solving the vehicle routing problem: algorithms, problem sets, and computational results. In: Laporte, G. (ed.) Fleet Management and Logistics, pp. 33–56. Springer, Berlin (1998)

    Chapter  Google Scholar 

  17. Grangier, P., Gendreau, M., Lehuédé, F., Rousseau, L.M.: An adaptive large neighborhood search for the two-echelon multiple-trip vehicle routing problem with satellite synchronization. Eur. J. Oper. Res. 254(1), 80–91 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  18. Gullhav, A., Cordeau, J.F., Hvattum, L.M., Nygreen, B.: Adaptive large neighborhood search heuristics for multi-tier service deployment problems in clouds. Eur. J. Oper. Res. 259, 829–846 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  19. Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  20. Hemmati, A., Hvattum, L.: Evaluating the importance of randomization in adaptive large neighborhood search. Int. Trans. Oper. Res. 24, 929–942 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  21. Hemmelmayr, V., Cordeau, J.F., Crainic, T.: An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics. Comput. Oper. Res. 39(12), 3215–3228 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  22. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: Paramils: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36(1), 267–306 (2009)

    Article  MATH  Google Scholar 

  23. Irnich, S., Toth, P., Vigo, D.: The family of vehicle routing problems. In: Toth, P., Vigo, D. (eds.) Vehicle Routing: Problems, Methods, and Applications, Chap 1, 2nd edn, pp. 1–33. SIAM, Philadelphia (2014)

    Google Scholar 

  24. James, T., Rego, C., Glover, F.: Multistart tabu search and diversification strategies for the quadratic assignment problem. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 39(3), 579–596 (2009)

    Article  Google Scholar 

  25. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  26. Landa-Silva, D., Obit, J.: Great deluge with non-linear decay rate for solving course timetabling problems. In: 4th International IEEE Conference on Intelligent Systems, 2008. IS’08, vol. 1, pp. 8–11. IEEE (2008)

  27. Laporte, G., Ropke, S., Vidal, T.: Heuristics for the vehicle routing problem. In: Toth, P., Vigo, D. (eds.) Vehicle Routing: Problems, Methods, and Applications, Chap 4, 2nd edn, pp. 87–116. SIAM, Philadelphia (2014)

    Chapter  Google Scholar 

  28. Lawler, E.L.: The quadratic assignment problem. Manag. Sci. 9(4), 586–599 (1963)

    MathSciNet  Article  MATH  Google Scholar 

  29. Lei, H., Laporte, G., Guo, B.: The capacitated vehicle routing problem with stochastic demands and time windows. Comput. Oper. Res. 38(12), 1775–1783 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  30. Li, F., Golden, B., Wasil, E.: Very large-scale vehicle routing: new test problems, algorithms, and results. Comput. Oper. Res. 32(5), 1165–1179 (2005)

    Article  MATH  Google Scholar 

  31. Li, Y., Pardalos, P., Resende, M.: A greedy randomized adaptive search procedure for the quadratic assignment problem. Quadratic Assign. Relat. Problems DIMACS Ser. Discrete Math. Theor. Comput. Sci. 16, 237–261 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  32. Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans. Evol. Comput. 4(4), 337–352 (2000)

    Article  Google Scholar 

  33. Muller, L., Spoorendonk, S., Pisinger, D.: A hybrid adaptive large neighborhood search heuristic for lot-sizing with setup times. Eur. J. Oper. Res. 218(3), 614–623 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  34. Parragh, S.N., Schmid, V.: Hybrid column generation and large neighborhood search for the dial-a-ride problem. Comput. Oper. Res. 40, 490–497 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  35. Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Comput. Oper. Res. 34(8), 2403–2435 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  36. Potvin, J.Y., Rousseau, J.M.: A parallel route building algorithm for the vehicle routing and scheduling problem with time windows. Eur. J. Oper. Res. 66(3), 331–340 (1993)

    Article  MATH  Google Scholar 

  37. Ribeiro, G., Laporte, G.: An adaptive large neighborhood search heuristic for the cumulative capacitated vehicle routing problem. Comput. Oper. Res. 39(3), 728–735 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  38. Rochat, Y., Taillard, É.D.: Probabilistic diversification and intensification in local search for vehicle routing. J. Heuristics 1(1), 147–167 (1995)

    Article  MATH  Google Scholar 

  39. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006a)

    Article  Google Scholar 

  40. Ropke, S., Pisinger, D.: A unified heuristic for a large class of vehicle routing problems with backhauls. Eur. J. Oper. Res. 171(3), 750–775 (2006b)

    MathSciNet  Article  MATH  Google Scholar 

  41. Ropke, S., Santini, A.: Parallel adaptive large neighbourhood search. OR-16-11, DEI University of Bologna (2016)

  42. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033–2049 (2007)

    Article  MATH  Google Scholar 

  43. Schmid, V.: Hybrid large neighborhood search for the bus rapid transit route design problem. Eur. J. Oper. Res. 238, 427–437 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  44. Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G.: Record breaking optimization results using the ruin and recreate principle. J. Comput. Phys. 159(2), 139–171 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  45. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: CP-98 (Fourth International Conference on Principles and Practice of Constraint Programming), Lecture Notes in Computer Science, vol. 1520, pp. 417–431 (1998)

  46. Stützle, T.: Iterated local search for the quadratic assignment problem. Eur. J. Oper. Res. 174(3), 1519–1539 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  47. Uchoa, E., Fukasawa, R., Lysgaard, J., Pessoa, A., De Aragao, M., Andrade, D.: Robust branch-cut-and-price for the capacitated minimum spanning tree problem over a large extended formulation. Math. Program. 112(2), 443–472 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  48. Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Subramanian, A., Vidal, T.: New benchmark instances for the capacitated vehicle routing problem. Technical Report, UFF, Rio de Janeiro, Brazil. http://www.optimization-online.org/DB_HTML/2014/10/4597.html (2014)

Download references

Acknowledgements

The authors thank two anonymous referees for their helpful comments that led to several improvements of the original manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alberto Santini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santini, A., Ropke, S. & Hvattum, L.M. A comparison of acceptance criteria for the adaptive large neighbourhood search metaheuristic. J Heuristics 24, 783–815 (2018). https://doi.org/10.1007/s10732-018-9377-x

Download citation

Keywords

  • Adaptive large neighbourhood search
  • Simulated annealing
  • Threshold acceptance
  • Record-to-record travel
  • Vehicle routing problem
  • Capacitated minimum spanning tree
  • Quadratic assignment problem