Journal of Heuristics

, Volume 25, Issue 4–5, pp 793–807 | Cite as

Intensification, diversification, and learning via relaxation adaptive memory programming: a case study on resource constrained project scheduling

  • R. Christopher L. Riley
  • Cesar RegoEmail author


Learning, clearly, can only occur in the presence of memory. Moreover, intensification and diversification strategies are widely recognized for their importance in the metaheuristics literature as the building blocks for adaptive memory programming (AMP). It is safe to say that any metaheuristic approach that isn’t blindly mechanistic uses some sort of adaptive memory to guide the search beyond local optimality, during which intensification and diversification always take place explicitly or implicitly. From this perspective, adaptive memory lies in the heart of what may be generally called the intensification, diversification, and learning (IDL) triangle. This paper focuses on the importance of solution landscape information in the design of AMP structures based on the IDL triangle. More specifically, we argue that a metaheuristic algorithm can only perform as good as the quality of information it is provided about the search space. To illustrate, we consider the computationally intractable Resource Constrained Project Scheduling Problem as a benchmark and take the approach of adding Lagrangian dual information to a rudimentary tabu search approach and integrate the two approaches via the Relaxation Adaptive Memory Programming (RAMP) framework. We show that while our simple tabu search component alone is not competitive with the best performing tabu search algorithms of the literature, when dual information is added to the procedure the resulting integrated RAMP algorithm outperforms all of them, thus supporting our premise.


Project scheduling Mathematical relaxation Heuristics Primal–dual search Adaptive memory Intensification Diversification Learning 


  1. Artigues, C., Demassey, S., Neron, E. (eds.): Resource-Constrained Project Scheduling: Models, Algorithms, Extensions and Applications. Wiley, Hoboken (2013)Google Scholar
  2. Artigues, C.: On the strength of time-indexed formulations for the resource-constrained project scheduling problem. Oper. Res. Lett. 45(2), 154–159 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  3. Artigues, C., Michelon, P., Reusser, S.: Insertion techniques for static and dynamic resource-constrained project scheduling. Eur. J. Oper. Res. 149(2), 249–267 (2003). MathSciNetCrossRefzbMATHGoogle Scholar
  4. Baar, T., Brucker, P., Knust, S.: Tabu search algorithms and lower bounds for the resource-constrained project scheduling problem. In: Voss, S., Martello, S., Osman, I.H., Roucairol, C. (eds.) Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 1–18. Kluwer Academic Publishers, Boston (1998)Google Scholar
  5. Bianco, L., Caramia, M.: The resource constrained project scheduling problem: a theoretical comparison between a recent formulation and the main time indexed linear programming based approaches. RAIRO-Oper. Res. 51(3), 519–532 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Blazewicz, J., Lenstra, J.K., Kan, A.H.G.R.: Scheduling subject to resource constraints: classification and complexity. Discrete Appl. Math. 5(1), 11–24 (1983). MathSciNetCrossRefzbMATHGoogle Scholar
  7. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling: notation, classification, models, and methods. Eur. J. Oper. Res. 112(1), 3–41 (1999). CrossRefzbMATHGoogle Scholar
  8. Camerini, P.M., Fratta, L., Maffioli, F.: On improving relaxation methods by modified gradient techniques. In: Balinski, M.L., Wolfe, P. (eds.) Mathematical Programming Studies, vol. 3, pp. 26–34. Springer, Berlin (1975)Google Scholar
  9. Carlton, W.B., Barnes, J.W.: A note on hashing functions and tabu search algorithms. Eur. J. Oper. Res. 95(1), 237–239 (1996). CrossRefzbMATHGoogle Scholar
  10. Christofides, N., Alvarez-Valdes, R., Tamarit, J.M.: Project scheduling with resource constraints: a branch and bound approach. Eur. J. Oper. Res. 29(3), 262–273 (1987). MathSciNetCrossRefzbMATHGoogle Scholar
  11. Gavish, B., Glover, F., Pirkul, H.: Surrogate constraints in integer programming. J. Inf. Optim. Sci. 12(2), 219–228 (1991)MathSciNetzbMATHGoogle Scholar
  12. Geoffrion, A.M.: Duality in nonlinear programming: a simplified applications-oriented development. SIAM Rev. 13(1), 1–37 (1971). MathSciNetCrossRefzbMATHGoogle Scholar
  13. Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1), 156–166 (1977). CrossRefGoogle Scholar
  14. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986). MathSciNetCrossRefzbMATHGoogle Scholar
  15. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)CrossRefzbMATHGoogle Scholar
  16. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35(4), 921–940 (1988). MathSciNetCrossRefzbMATHGoogle Scholar
  17. Greenberg, H.J., Pierskalla, W.P.: Surrogate mathematical programming. Oper. Res. 18(5), 924–939 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 207(1), 1–14 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  19. Hartmann, S., Kolisch, R.: Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 127(2), 394–407 (2000). CrossRefzbMATHGoogle Scholar
  20. Herroelen, W., De Reyck, B., Demeulemeester, E.: Resource-constrained project scheduling: a survey of recent developments. Comput. Oper. Res. 25(4), 279–302 (1998). MathSciNetCrossRefzbMATHGoogle Scholar
  21. Icmeli, O., Erenguc, S.S., Zappe, C.J.: Project scheduling problems: a survey. Int. J. Oper. Prod. Manag. 13(11), 80–91 (1993). CrossRefGoogle Scholar
  22. Karwan, M.H., Rardin, R.L.: Some relationships between lagrangian and surrogate duality in integer programming. Math. Program. 17(1), 320–334 (1979). MathSciNetCrossRefzbMATHGoogle Scholar
  23. Klein, R.: Project scheduling with time-varying resource constraints. Int. J. Prod. Res. 38(16), 3937–3952 (2000). CrossRefzbMATHGoogle Scholar
  24. Kolisch, R., Hartmann, S.: Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis. In: Weglarz, J. (ed.) Project Scheduling: Recent Models, Algorithms, and Applications. International Series in Operations Research & Management Science, pp. 147–178. Kluwer Academic Publishers, Boston (1998)Google Scholar
  25. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur. J. Oper. Res. 174(1), 23–37 (2006). CrossRefzbMATHGoogle Scholar
  26. Kolisch, R., Padman, R.: An integrated survey of deterministic project scheduling. Omega 29(3), 249–272 (2001). CrossRefGoogle Scholar
  27. Kolisch, R., Schwindt, C., Sprecher, A.: Benchmark instances for project scheduling problems. In: Węglarz, J. (ed.) Project Scheduling. International Series in Operations Research & Management Science, vol 14. Springer, Boston, MA (1999)Google Scholar
  28. Koné, O., Artigues, C., Lopez, P., Mongeau, M.: Event-based MILP models for resource-constrained project scheduling problems. Comput. Oper. Res. 38(1), 3–13 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  29. Möhring, R., Schulz, A., Stork, F., Uetz, M.: Solving project scheduling problems by minimum cut computations. Manage. Sci. 49(3), 330–350 (2003)CrossRefzbMATHGoogle Scholar
  30. Nonobe, K., Ibaraki, T.: Formulation and Tabu search algorithm for the resource constrained project scheduling problem. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Metaheuristics, pp. 557–588. Kluwer Academic Publishers, Boston (2002)CrossRefGoogle Scholar
  31. Özdamar, L., Ulusoy, G.: A survey on the resource-constrained project scheduling problem. IIE Trans. 27(5), 574–586 (1995). CrossRefGoogle Scholar
  32. Polyak, B.T.: Minimization of unsmooth functionals. USSR Comput. Math. Math. Phys. 9(3), 14–29 (1969). CrossRefzbMATHGoogle Scholar
  33. Pritsker, A.A.B., Watters, L.J., Wolfe, P.M.: Multiproject scheduling with limited resources: a zero-one programming approach. Manage. Sci. 16(1), 93–108 (1969)CrossRefGoogle Scholar
  34. Rego, C.: RAMP: a new metaheuristic framework for combinatorial optimization. In: Sharda, R., Voß, S., Rego, C., Alidaee, B. (eds.) Metaheuristic Optimization via Memory and Evolution. Operations Research/Computer Science Interfaces Series, vol. 30, pp. 441–460. Springer, Berlin (2005)CrossRefGoogle Scholar
  35. Rolland, E., Patterson, R. A., Ward, K., & Dodin, B.: Decision support for disaster management. Oper. Manag. Res. 3(1–2), 68–79 (2010)CrossRefGoogle Scholar
  36. Rego, C., Mathew, F., Glover, F.: RAMP for the capacitated minimum spanning tree problem. Ann. Oper. Res. 181(1), 661–681 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  37. Schwindt, C., Trautmann, N.: Batch scheduling in process industries: an application of resource–constrained project scheduling. OR Spectr. 22(4), 501–524 (2000). MathSciNetCrossRefzbMATHGoogle Scholar
  38. Taillard, É.D., Waelti, P., Zuber, J.: Few statistical tests for proportions comparison. Eur. J. Oper. Res. 185(3), 1336–1350 (2008). CrossRefzbMATHGoogle Scholar
  39. Valls, V., Ballestı́n, F., Quintanilla, S.: Justification and RCPSP: a technique that pays. Eur. J. Oper. Res. 165(2), 375–386 (2005). CrossRefzbMATHGoogle Scholar
  40. Woodruff, D.L., Zemel, E.: Hashing vectors for tabu search. Ann. Oper. Res. 41(1–4), 123–137 (1993)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of BusinessDelta State UniversityClevelandUSA
  2. 2.School of Business AdministrationUniversity of MississippiUniversityUSA

Personalised recommendations