Abstract
With limited financial resources, decision-makers in firms and governments face the task of selecting the best portfolio of projects to invest in. As the pool of project proposals increases and more realistic constraints are considered, the problem becomes NP-hard. Thus, metaheuristics have been employed for solving large instances of the project portfolio selection problem (PPSP). However, most of the existing works do not account for uncertainty. This paper contributes to close this gap by analyzing a stochastic version of the PPSP: the goal is to maximize the expected net present value of the inversion, while considering random cash flows and discount rates in future periods, as well as a rich set of constraints including the maximum risk allowed. To solve this stochastic PPSP, a simulation-optimization algorithm is introduced. Our approach integrates a variable neighborhood search metaheuristic with Monte Carlo simulation. A series of computational experiments contribute to validate our approach and illustrate how the solutions vary as the level of uncertainty increases.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Azizi, N., Zolfaghari, S.: Adaptive temperature control for simulated annealing: a comparative study. Comput. Oper. Res. 31(14), 2439–2451 (2004)
Carazo, A.F., Gómez, T., Molina, J., Hernández-Díaz, A.G., Guerrero, F.M., Caballero, R.: Solving a comprehensive model for multiobjective project portfolio selection. Comput. Oper. Res. 37(4), 630–639 (2010)
Coldrick, S., Longhurst, P., Ivey, P., Hannis, J.: An R&D options selection model for investment decisions. Technovation 25(3), 185–193 (2005)
Cruz, L., Fernandez, E., Gomez, C., Rivera, G., Perez, F.: Many-objective portfolio optimization of interdependent projects with ‘a priori’ incorporation of decision-maker preferences. Appl. Math. Inf. Sci. 8(4), 1517–1531 (2014)
Doerner, K., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C.: Pareto ant colony optimization: a metaheuristic approach to multiobjective portfolio selection. Ann. Oper. Res. 131(1–4), 79–99 (2004)
Doerner, K.F., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C.: Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection. Eur. J. Oper. Res. 171(3), 830–841 (2006)
Fernandez, E., Gomez, C., Rivera, G., Cruz-Reyes, L.: Hybrid metaheuristic approach for handling many objectives and decisions on partial support in project portfolio optimisation. Inf. Sci. 315, 102–122 (2015)
Gabriel, S.A., Kumar, S., Ordòñez, J., Nasserian, A.: A multiobjective optimization model for project selection with probabilistic considerations. Socio-Econ. Plan. Sci. 40(4), 297–313 (2006)
Ghasemzadeh, F., Archer, N.: Project portfolio selection through decision support. Decis. Support Syst. 29(1), 73–88 (2000)
Grasas, A., Juan, A.A., Faulin, J., de Armas, J., Ramalhinho, H.: Biased randomization of heuristics using skewed probability distributions: a survey and some applications. Comput. Ind. Eng. 110, 216–228 (2017)
Gutjahr, W.J., Katzensteiner, S., Reiter, P., Stummer, C., Denk, M.: Competence-driven project portfolio selection, scheduling and staff assignment. CEJOR 16(3), 281–306 (2008)
Gutjahr, W.J., Katzensteiner, S., Reiter, P., Stummer, C., Denk, M.: Multi-objective decision analysis for competence-oriented project portfolio selection. Eur. J. Oper. Res. 205(3), 670–679 (2010)
Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)
Hansen, P., Mladenović, N.: Variable neighborhood search. In: Burke, E., Kendall, G. (eds.) Search Methodologies, pp. 313–337. Springer, Berlin (2014)
Hansen, P., Mladenović, N., et al.: Variable neighborhood search. Eur. J. Oper. Res. 191(3), 593–595 (2008)
Höller, H., Melián, B., Voß, S.: Applying the pilot method to improve VNS and GRASP metaheuristics for the design of SDH/WDM networks. Eur. J. Oper. Res. 191(3), 691–704 (2008)
Huang, X.: Optimal project selection with random fuzzy parameters. Int. J. Prod. Econ. 106(2), 513–522 (2007)
Juan, A.A., Faulin, J., Ferrer, A., Lourenço, H.R., Barrios, B.: Mirha: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems. Top 21(1), 109–132 (2013)
Juan, A.A., Faulin, J., Grasman, S.E., Rabe, M., Figueira, G.: A review of simheuristics: extending metaheuristics to deal with stochastic combinatorial optimization problems. Oper. Res. Perspect. 2, 62–72 (2015a)
Juan, A.A., Pascual, I., Guimarans, D., Barrios, B.: Combining biased randomization with iterated local search for solving the multidepot vehicle routing problem. Int. Trans. Oper. Res. 22(4), 647–667 (2015b)
Kiesling, E., Ekelhart, A., Grill, B., Strauss, C., Stummer, C.: Selecting security control portfolios: a multi-objective simulation-optimization approach. EURO J. Decis. Process. 4(1–2), 85–117 (2016)
Liesiö, J., Mild, P., Salo, A.: Preference programming for robust portfolio modeling and project selection. Eur. J. Oper. Res. 181(3), 1488–1505 (2007)
Liesiö, J., Mild, P., Salo, A.: Robust portfolio modeling with incomplete cost information and project interdependencies. Eur. J. Oper. Res. 190(3), 679–695 (2008)
Medaglia, A.L., Graves, S.B., Ringuest, J.L.: A multiobjective evolutionary approach for linearly constrained project selection under uncertainty. Eur. J. Oper. Res. 179(3), 869–894 (2007)
Melián, B.: Using memory to improve the VNS metaheuristic for the design of SDH/WDM networks. In: Proceedings of the Third International Conference on Hybrid Metaheuristics, HM’06, pp. 82–93. Springer, Berlin (2006)
Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)
Moreno-Vega, J.M., Melián, B.: Introduction to the special issue on variable neighborhood search. J. Heuristics 14(5), 403–404 (2008)
Nikolaev, A.G., Jacobson, S.H.: Simulated annealing. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, volume 146 of International Series in Operations Research & Management Science, 2nd edn, pp. 1–39. Springer, New York (2010)
Patrick, H.T.: Financial development and economic growth in underdeveloped countries. Econ. Dev. Cult. Change 14(2), 174–189 (1966)
Rabbani, M., Aramoon Bajestani, M., Baharian Khoshkhou, G.: A multi-objective particle swarm optimization for project selection problem. Expert Syst. Appl. 37(1), 315–321 (2010)
Rooderkerk, R.P., van Heerde, H.J.: Robust optimization of the 0–1 knapsack problem: balancing risk and return in assortment optimization. Eur. J. Oper. Res. 250(3), 842–854 (2016)
Schmidt, R.L.: A model for R & D project selection with combined benefit, outcome and resource interactions. IEEE Trans. Eng. Manage. 40(4), 403–410 (1993)
Soler-Dominguez, A., Juan, A., Kizys, R.: A survey on financial applications of metaheuristics. ACM Comput. Surv. 50, 1–23 (2017)
Stummer, C., Sun, M.: New multiobjective metaheuristic solution procedures for capital investment planning. J. Heuristics 11(3), 183–199 (2005)
Suh, C.-K., Suh, E.-H., Baek, K.-C.: Prioritizing telecommunications technologies for long-range R&D planning to the year 2006. IEEE Trans. Eng. Manag. 41(3), 264–275 (1994)
Tricoire, F.: Multi-directional local search. Comput. Oper. Res. 39(12), 3089–3101 (2012)
Urli, B., Terrien, F.: Project portfolio selection model, a realistic approach. Int. Trans. Oper. Res. 17(6), 809–826 (2010)
Acknowledgements
This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (TRA2013-48180-C3-P, TRA2015-71883-REDT), FEDER. and the Erasmus+ programme (20161ES01KA108023465).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Panadero, J., Doering, J., Kizys, R. et al. A variable neighborhood search simheuristic for project portfolio selection under uncertainty. J Heuristics 26, 353–375 (2020). https://doi.org/10.1007/s10732-018-9367-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10732-018-9367-z