A biased-randomized variable neighborhood search for sustainable multi-depot vehicle routing problems

Abstract

Urban freight transport is becoming increasingly complex due to a boost in the volume of products distributed and the associated number of delivery services. In addition, stakeholders’ preferences and city logistics dynamics affect the freight flow and the efficiency of the delivery process in downtown areas. In general, transport activities have a significant and negative impact on the environment and citizens’ welfare, which motivates the need for sustainable transport planning. This work proposes a metaheuristic-based approach for tackling an enriched multi-depot vehicle routing problem in which economic, environmental, and social dimensions are considered. Our approach integrates biased-randomization strategies within a variable neighborhood search framework in order to better guide the searching process. A series of computational experiments illustrates how the aforementioned dimensions can be integrated in realistic transport operations. Also, the paper discusses how the cost values change as different dimensions are prioritized.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bektaş, T., Laporte, G.: The pollution-routing problem. Transp. Res. Part B Methodol. 45(8), 1232–1250 (2011)

    Google Scholar 

  2. Caceres, J., Arias, P., Guimarans, D., Riera, D., Juan, A.A.: Rich vehicle routing problem: a survey. ACM Comput. Surv. 47(2), 1–28 (2014)

    Google Scholar 

  3. Calvet, L., Ferrer, A., Gomes, M.I., Juan, A.A., Masip, D.: Combining statistical learning with metaheuristics for the multi-depot vehicle routing problem with market segmentation. Comput. Ind. Eng. 94, 93–104 (2016)

    Google Scholar 

  4. Chao, I.M., Golden, B.L., Wasil, E.: A new heuristic for the multi-depot vehicle routing problem that improves upon best-known solutions. Am. J. Math. Manag. Sci. 13(3–4), 371–406 (1993). https://doi.org/10.1080/01966324.1993.10737363

    Article  MATH  Google Scholar 

  5. Chen, L.W., Sharma, P., Tseng, Y.C.: Dynamic traffic control with fairness and throughput optimization using vehicular communications. IEEE J. Sel. Areas Commun. 31(9), 504–512 (2013)

    Google Scholar 

  6. Chibeles-Martins, N., Pinto-Varela, T., Barbosa-Póvoa, A.P., Novais, A.Q.: A multi-objective meta-heuristic approach for the design and planning of green supply chains—MBSA. Expert Syst. Appl. 47, 71–84 (2016)

    Google Scholar 

  7. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12(4), 568–581 (1964)

    Google Scholar 

  8. Cordeau, J.F., Maischberger, M.: A parallel iterated tabu search heuristic for vehicle routing problems. Comput. Oper. Res. 39(9), 2033–2050 (2012)

    Google Scholar 

  9. Delucchi, M.A., McCubbin, D.R.: External costs of transport in the US. Institute of Transportation Studies, pp. 1–34 (2010)

  10. Demir, E., Van Woensel, T., de Kok, T.: Multidepot distribution planning at logistics service provider Nabuurs BV. Interfaces 44(6), 591–604 (2014)

    Google Scholar 

  11. Dominguez, O., Juan, A.A., Faulin, J.: A biased-randomized algorithm for the two-dimensional vehicle routing problem with and without item rotations. Int. Trans. Oper. Res. 21(3), 375–398 (2014)

    MATH  Google Scholar 

  12. Dominguez, O., Juan, A.A., Barrios, B., Faulin, J., Agustin, A.: Using biased randomization for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet. Ann. Oper. Res. 236(2), 383–404 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Escobar, J.W., Linfati, R., Toth, P., Baldoquin, M.G.: A hybrid granular tabu search algorithm for the multi-depot vehicle routing problem. J. Heuristics 20(5), 483–509 (2014)

    Google Scholar 

  14. European Commission: EU Transport in figures. Statistical pocketbook, 2015th edn (2015). https://doi.org/10.2832/9150

  15. Eurostat: Sustainable development in the European Union: 2015 monitoring report of the EU sustainable development strategy. Publications office of the European Union (2015)

  16. Faulin, J., Juan, A.A., Lera, F., Grasman, S.: Solving the capacitated vehicle routing problem with environmental criteria based on real estimations in road transportation: a case study. Procedia Soc. Behav. Sci. 20, 323–334 (2011)

    Google Scholar 

  17. Grasas, A., Juan, A.A., Faulin, J., de Armas, J., Ramalhinho, H.: Biased randomization of heuristics using skewed probability distributions: a survey and some applications. Comput. Ind. Eng. 110, 216–228 (2017)

    Google Scholar 

  18. Hansen, P., Mladenović, N.: Variable neighborhood search. In: Search Methodologies, pp. 313–337. Springer (2014)

  19. Hansen, P., Mladenović, N., Pérez, J.A.M.: Variable neighbourhood search: methods and applications. Ann. Oper. Res. 175(1), 367–407 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Hatami, S., Ruiz, R., Andrés-Romano, C.: Heuristics and metaheuristics for the distributed assembly permutation flowshop scheduling problem with sequence dependent setup times. Int. J. Prod. Econ. 169, 76–88 (2015)

    Google Scholar 

  21. Hunt, J.D., Stefan, K.J.: Tour-based microsimulation of urban commercial movements. Transp. Res. Part B Methodol. 41(9), 981–1013 (2007)

    Google Scholar 

  22. Jabbarpour, M.R., Noor, R.M., Khokhar, R.H.: Green vehicle traffic routing system using ant-based algorithm. J. Netw. Comput. Appl. 58, 294–308 (2015)

    Google Scholar 

  23. Juan, A.A., Faulin, J., Jorba, J., Riera, D., Masip, D., Barrios, B.: On the use of Monte Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings heuristics. J. Oper. Res. Soc. 6(62), 1085–1097 (2010)

    Google Scholar 

  24. Juan, A.A., Faulin, J., Ferrer, A., Lourenço, H.R., Barrios, B.: MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems. TOP 21(1), 109–132 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Juan, A.A., Faulin, J., Pérez-Bernabeu, E., Jozefowiez, N.: Horizontal cooperation in vehicle routing problems with backhauling and environmental criteria. Procedia Soc. Behav. Sci. 111, 1133–1141 (2014)

    Google Scholar 

  26. Juan, A.A., Pascual, I., Guimarans, D., Barrios, B.: Combining biased randomization with iterated local search for solving the multi-depot vehicle routing problem. Int. Trans. Oper. Res. 22(4), 647–667 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Kadziński, M., Tervonen, T., Tomczyk, M.K., Dekker, R.: Evaluation of multi-objective optimization approaches for solving green supply chain design problems. Omega 68, 168–184 (2016)

    Google Scholar 

  28. Koç, Ç., Bektaş, T., Jabali, O., Laporte, G.: The fleet size and mix pollution-routing problem. Transp. Res. Part B Methodol. 70, 239–254 (2014)

    MATH  Google Scholar 

  29. Kuo, Y.: Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem. Comput. Ind. Eng. 59(1), 157–165 (2010)

    Google Scholar 

  30. Liu, W.Y., Lin, C.C., Chiu, C.R., Tsao, Y.S., Wang, Q.: Minimizing the carbon footprint for the time-dependent heterogeneous-fleet vehicle routing problem with alternative paths. Sustainability 6(7), 4658–4684 (2014)

    Google Scholar 

  31. McKinnon, A., Browne, M., Whiteing, A., Piecyk, M.: Green Logistics: Improving the Environmental Sustainability of Logistics. Kogan Page Publishers, London (2015)

    Google Scholar 

  32. Mirabi, M., Fatemi Ghomi, S.M.T., Jolai, F.: Efficient stochastic hybrid heuristics for the multi-depot vehicle routing problem. Robot. Comput. Integr. Manuf. 26(6), 564–569 (2010)

    Google Scholar 

  33. Muñuzuri, J., Cortés, P., Onieva, L., Guadix, J.: Modelling peak-hour urban freight movements with limited data availability. Comput. Ind. Eng. 59(1), 34–44 (2010)

    Google Scholar 

  34. Niknamfar, A.H., Niaki, S.T.A.: Fair profit contract for a carrier collaboration framework in a green hub network under soft time-windows: dual lexicographic max–min approach. Transp. Res. Part E Logist. Transp. Rev. 91, 129–151 (2016)

    Google Scholar 

  35. Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Comput. Oper. Res. 34(8), 2403–2435 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Ranaiefar, F., Amelia, R.: Freight-Transportation Externalities. Elsevier Inc, Amsterdam (2011)

    Google Scholar 

  37. Ruan, M., Lin, J.J., Kawamura, K.: Modeling urban commercial vehicle daily tour chaining. Transp. Res. Part E Logist. Transp. Rev. 48(6), 1169–1184 (2012)

    Google Scholar 

  38. Salhi, S.: Heuristic Search: The Emerging Science of Problem Solving. Springer, Berlin (2017)

    Google Scholar 

  39. Santos, G., Behrendt, H., Maconi, L., Shirvani, T., Teytelboym, A.: Part I: externalities and economic policies in road transport. Res. Transp. Econ. 28(1), 2–45 (2010)

    Google Scholar 

  40. Scheuer, S.: EU Environmental Policy Handbook. A Critical Analysis of EU Environmental Legislation: Making it Accessible to Environmentalists and Decision Makers. European Environmental Bureau (EEB), Brussels (2005)

    Google Scholar 

  41. Subramanian, A., Uchoa, E., Ochi, L.S.: A hybrid algorithm for a class of vehicle routing problems. Comput. Oper. Res. 40(10), 2519–2531 (2013)

    MATH  Google Scholar 

  42. Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken (2009)

    Google Scholar 

  43. Teo, J.S.E., Qureshi, A.G.: Evaluating city logistics measure in e-commerce with multiagent systems. Procedia Soc. Behav.Sci. 39, 349–359 (2012)

    Google Scholar 

  44. Ubeda, S., Arcelus, F., Faulin, J.: Green logistics at Eroski: a case study. Int. J. Prod. Econ. 131(1), 44–51 (2011)

    Google Scholar 

  45. Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W.: A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. Oper. Res. 60(3), 611–624 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A unified solution framework for multi-attribute vehicle routing problems. Eur. J. Oper. Res. 234(3), 658–673 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Wang, X., Kopfer, H., Gendreau, M.: Operational transportation planning of freight forwarding companies in horizontal coalitions. Eur. J. Oper. Res. 237(3), 1133–1141 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Wang, X., Fan, T., Li, W., Yu, R., Bullock, D., Wu, B., Tremont, P.: Speed variation during peak and off-peak hours on urban arterials in Shanghai. Transp. Res. Part C Emerg. Technol. 67, 84–94 (2016)

    Google Scholar 

  49. Xiao, Y., Konak, A.: Green vehicle routing problem with time-varying traffic congestion. In: Proceedings of the 14th INFORMS Computing Society Conference, pp. 134–148 (2015)

  50. Xie, K., Wang, X., Huang, H., Chen, X.: Corridor-level signalized intersection safety analysis in Shanghai, China using Bayesian hierarchical models. Accid. Anal. Prev. 50, 25–33 (2013)

    Google Scholar 

  51. Zhang, J., Zhao, Y., Xue, W., Li, J.: Vehicle routing problem with fuel consumption and carbon emission. Int. J. Prod. Econ. 170, 234–242 (2015)

    Google Scholar 

  52. Zhang, S., Lee, C.K.M., Wu, K., Choy, K.L.: Multi-objective optimization for sustainable supply chain network design considering multiple distribution channels. Expert Syst. Appl. 65, 87–99 (2016)

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish Ministry of Economy and Competitiveness, FEDER (TRA2013-48180-C3-P, TRA2015-71883-REDT), the Ibero-American Program for Science and Technology for Development (CYTED2014-515RT0489), and the Erasmus+ programme (2016-1-ES01-KA108-023465). Likewise, we want to thank the support of the UPNA doctoral grants programme.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lorena Reyes-Rubiano.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reyes-Rubiano, L., Calvet, L., Juan, A.A. et al. A biased-randomized variable neighborhood search for sustainable multi-depot vehicle routing problems. J Heuristics 26, 401–422 (2020). https://doi.org/10.1007/s10732-018-9366-0

Download citation

Keywords

  • Sustainability
  • City logistics
  • Multi-depot vehicle routing problem
  • Variable neighborhood search
  • Biased randomization