A biased-randomized variable neighborhood search for sustainable multi-depot vehicle routing problems

  • Lorena Reyes-RubianoEmail author
  • Laura Calvet
  • Angel A. Juan
  • Javier Faulin
  • Lluc Bové


Urban freight transport is becoming increasingly complex due to a boost in the volume of products distributed and the associated number of delivery services. In addition, stakeholders’ preferences and city logistics dynamics affect the freight flow and the efficiency of the delivery process in downtown areas. In general, transport activities have a significant and negative impact on the environment and citizens’ welfare, which motivates the need for sustainable transport planning. This work proposes a metaheuristic-based approach for tackling an enriched multi-depot vehicle routing problem in which economic, environmental, and social dimensions are considered. Our approach integrates biased-randomization strategies within a variable neighborhood search framework in order to better guide the searching process. A series of computational experiments illustrates how the aforementioned dimensions can be integrated in realistic transport operations. Also, the paper discusses how the cost values change as different dimensions are prioritized.


Sustainability City logistics Multi-depot vehicle routing problem Variable neighborhood search Biased randomization 



This work has been partially supported by the Spanish Ministry of Economy and Competitiveness, FEDER (TRA2013-48180-C3-P, TRA2015-71883-REDT), the Ibero-American Program for Science and Technology for Development (CYTED2014-515RT0489), and the Erasmus+ programme (2016-1-ES01-KA108-023465). Likewise, we want to thank the support of the UPNA doctoral grants programme.


  1. Bektaş, T., Laporte, G.: The pollution-routing problem. Transp. Res. Part B Methodol. 45(8), 1232–1250 (2011)CrossRefGoogle Scholar
  2. Caceres, J., Arias, P., Guimarans, D., Riera, D., Juan, A.A.: Rich vehicle routing problem: a survey. ACM Comput. Surv. 47(2), 1–28 (2014)CrossRefGoogle Scholar
  3. Calvet, L., Ferrer, A., Gomes, M.I., Juan, A.A., Masip, D.: Combining statistical learning with metaheuristics for the multi-depot vehicle routing problem with market segmentation. Comput. Ind. Eng. 94, 93–104 (2016)CrossRefGoogle Scholar
  4. Chao, I.M., Golden, B.L., Wasil, E.: A new heuristic for the multi-depot vehicle routing problem that improves upon best-known solutions. Am. J. Math. Manag. Sci. 13(3–4), 371–406 (1993). zbMATHGoogle Scholar
  5. Chen, L.W., Sharma, P., Tseng, Y.C.: Dynamic traffic control with fairness and throughput optimization using vehicular communications. IEEE J. Sel. Areas Commun. 31(9), 504–512 (2013)CrossRefGoogle Scholar
  6. Chibeles-Martins, N., Pinto-Varela, T., Barbosa-Póvoa, A.P., Novais, A.Q.: A multi-objective meta-heuristic approach for the design and planning of green supply chains—MBSA. Expert Syst. Appl. 47, 71–84 (2016)CrossRefGoogle Scholar
  7. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12(4), 568–581 (1964)CrossRefGoogle Scholar
  8. Cordeau, J.F., Maischberger, M.: A parallel iterated tabu search heuristic for vehicle routing problems. Comput. Oper. Res. 39(9), 2033–2050 (2012)CrossRefGoogle Scholar
  9. Delucchi, M.A., McCubbin, D.R.: External costs of transport in the US. Institute of Transportation Studies, pp. 1–34 (2010)Google Scholar
  10. Demir, E., Van Woensel, T., de Kok, T.: Multidepot distribution planning at logistics service provider Nabuurs BV. Interfaces 44(6), 591–604 (2014)CrossRefGoogle Scholar
  11. Dominguez, O., Juan, A.A., Faulin, J.: A biased-randomized algorithm for the two-dimensional vehicle routing problem with and without item rotations. Int. Trans. Oper. Res. 21(3), 375–398 (2014)CrossRefzbMATHGoogle Scholar
  12. Dominguez, O., Juan, A.A., Barrios, B., Faulin, J., Agustin, A.: Using biased randomization for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet. Ann. Oper. Res. 236(2), 383–404 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Escobar, J.W., Linfati, R., Toth, P., Baldoquin, M.G.: A hybrid granular tabu search algorithm for the multi-depot vehicle routing problem. J. Heuristics 20(5), 483–509 (2014)CrossRefGoogle Scholar
  14. European Commission: EU Transport in figures. Statistical pocketbook, 2015th edn (2015).
  15. Eurostat: Sustainable development in the European Union: 2015 monitoring report of the EU sustainable development strategy. Publications office of the European Union (2015)Google Scholar
  16. Faulin, J., Juan, A.A., Lera, F., Grasman, S.: Solving the capacitated vehicle routing problem with environmental criteria based on real estimations in road transportation: a case study. Procedia Soc. Behav. Sci. 20, 323–334 (2011)CrossRefGoogle Scholar
  17. Grasas, A., Juan, A.A., Faulin, J., de Armas, J., Ramalhinho, H.: Biased randomization of heuristics using skewed probability distributions: a survey and some applications. Comput. Ind. Eng. 110, 216–228 (2017)CrossRefGoogle Scholar
  18. Hansen, P., Mladenović, N.: Variable neighborhood search. In: Search Methodologies, pp. 313–337. Springer (2014)Google Scholar
  19. Hansen, P., Mladenović, N., Pérez, J.A.M.: Variable neighbourhood search: methods and applications. Ann. Oper. Res. 175(1), 367–407 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Hatami, S., Ruiz, R., Andrés-Romano, C.: Heuristics and metaheuristics for the distributed assembly permutation flowshop scheduling problem with sequence dependent setup times. Int. J. Prod. Econ. 169, 76–88 (2015)CrossRefGoogle Scholar
  21. Hunt, J.D., Stefan, K.J.: Tour-based microsimulation of urban commercial movements. Transp. Res. Part B Methodol. 41(9), 981–1013 (2007)CrossRefGoogle Scholar
  22. Jabbarpour, M.R., Noor, R.M., Khokhar, R.H.: Green vehicle traffic routing system using ant-based algorithm. J. Netw. Comput. Appl. 58, 294–308 (2015)CrossRefGoogle Scholar
  23. Juan, A.A., Faulin, J., Jorba, J., Riera, D., Masip, D., Barrios, B.: On the use of Monte Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings heuristics. J. Oper. Res. Soc. 6(62), 1085–1097 (2010)Google Scholar
  24. Juan, A.A., Faulin, J., Ferrer, A., Lourenço, H.R., Barrios, B.: MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems. TOP 21(1), 109–132 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Juan, A.A., Faulin, J., Pérez-Bernabeu, E., Jozefowiez, N.: Horizontal cooperation in vehicle routing problems with backhauling and environmental criteria. Procedia Soc. Behav. Sci. 111, 1133–1141 (2014)CrossRefGoogle Scholar
  26. Juan, A.A., Pascual, I., Guimarans, D., Barrios, B.: Combining biased randomization with iterated local search for solving the multi-depot vehicle routing problem. Int. Trans. Oper. Res. 22(4), 647–667 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Kadziński, M., Tervonen, T., Tomczyk, M.K., Dekker, R.: Evaluation of multi-objective optimization approaches for solving green supply chain design problems. Omega 68, 168–184 (2016)CrossRefGoogle Scholar
  28. Koç, Ç., Bektaş, T., Jabali, O., Laporte, G.: The fleet size and mix pollution-routing problem. Transp. Res. Part B Methodol. 70, 239–254 (2014)CrossRefzbMATHGoogle Scholar
  29. Kuo, Y.: Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem. Comput. Ind. Eng. 59(1), 157–165 (2010)CrossRefGoogle Scholar
  30. Liu, W.Y., Lin, C.C., Chiu, C.R., Tsao, Y.S., Wang, Q.: Minimizing the carbon footprint for the time-dependent heterogeneous-fleet vehicle routing problem with alternative paths. Sustainability 6(7), 4658–4684 (2014)CrossRefGoogle Scholar
  31. McKinnon, A., Browne, M., Whiteing, A., Piecyk, M.: Green Logistics: Improving the Environmental Sustainability of Logistics. Kogan Page Publishers, London (2015)Google Scholar
  32. Mirabi, M., Fatemi Ghomi, S.M.T., Jolai, F.: Efficient stochastic hybrid heuristics for the multi-depot vehicle routing problem. Robot. Comput. Integr. Manuf. 26(6), 564–569 (2010)CrossRefGoogle Scholar
  33. Muñuzuri, J., Cortés, P., Onieva, L., Guadix, J.: Modelling peak-hour urban freight movements with limited data availability. Comput. Ind. Eng. 59(1), 34–44 (2010)CrossRefGoogle Scholar
  34. Niknamfar, A.H., Niaki, S.T.A.: Fair profit contract for a carrier collaboration framework in a green hub network under soft time-windows: dual lexicographic max–min approach. Transp. Res. Part E Logist. Transp. Rev. 91, 129–151 (2016)CrossRefGoogle Scholar
  35. Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Comput. Oper. Res. 34(8), 2403–2435 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  36. Ranaiefar, F., Amelia, R.: Freight-Transportation Externalities. Elsevier Inc, Amsterdam (2011)CrossRefGoogle Scholar
  37. Ruan, M., Lin, J.J., Kawamura, K.: Modeling urban commercial vehicle daily tour chaining. Transp. Res. Part E Logist. Transp. Rev. 48(6), 1169–1184 (2012)CrossRefGoogle Scholar
  38. Salhi, S.: Heuristic Search: The Emerging Science of Problem Solving. Springer, Berlin (2017)CrossRefGoogle Scholar
  39. Santos, G., Behrendt, H., Maconi, L., Shirvani, T., Teytelboym, A.: Part I: externalities and economic policies in road transport. Res. Transp. Econ. 28(1), 2–45 (2010)CrossRefGoogle Scholar
  40. Scheuer, S.: EU Environmental Policy Handbook. A Critical Analysis of EU Environmental Legislation: Making it Accessible to Environmentalists and Decision Makers. European Environmental Bureau (EEB), Brussels (2005)Google Scholar
  41. Subramanian, A., Uchoa, E., Ochi, L.S.: A hybrid algorithm for a class of vehicle routing problems. Comput. Oper. Res. 40(10), 2519–2531 (2013)CrossRefzbMATHGoogle Scholar
  42. Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken (2009)CrossRefzbMATHGoogle Scholar
  43. Teo, J.S.E., Qureshi, A.G.: Evaluating city logistics measure in e-commerce with multiagent systems. Procedia Soc. Behav.Sci. 39, 349–359 (2012)CrossRefGoogle Scholar
  44. Ubeda, S., Arcelus, F., Faulin, J.: Green logistics at Eroski: a case study. Int. J. Prod. Econ. 131(1), 44–51 (2011)CrossRefGoogle Scholar
  45. Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W.: A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. Oper. Res. 60(3), 611–624 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  46. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A unified solution framework for multi-attribute vehicle routing problems. Eur. J. Oper. Res. 234(3), 658–673 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  47. Wang, X., Kopfer, H., Gendreau, M.: Operational transportation planning of freight forwarding companies in horizontal coalitions. Eur. J. Oper. Res. 237(3), 1133–1141 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  48. Wang, X., Fan, T., Li, W., Yu, R., Bullock, D., Wu, B., Tremont, P.: Speed variation during peak and off-peak hours on urban arterials in Shanghai. Transp. Res. Part C Emerg. Technol. 67, 84–94 (2016)CrossRefGoogle Scholar
  49. Xiao, Y., Konak, A.: Green vehicle routing problem with time-varying traffic congestion. In: Proceedings of the 14th INFORMS Computing Society Conference, pp. 134–148 (2015)Google Scholar
  50. Xie, K., Wang, X., Huang, H., Chen, X.: Corridor-level signalized intersection safety analysis in Shanghai, China using Bayesian hierarchical models. Accid. Anal. Prev. 50, 25–33 (2013)CrossRefGoogle Scholar
  51. Zhang, J., Zhao, Y., Xue, W., Li, J.: Vehicle routing problem with fuel consumption and carbon emission. Int. J. Prod. Econ. 170, 234–242 (2015)CrossRefGoogle Scholar
  52. Zhang, S., Lee, C.K.M., Wu, K., Choy, K.L.: Multi-objective optimization for sustainable supply chain network design considering multiple distribution channels. Expert Syst. Appl. 65, 87–99 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lorena Reyes-Rubiano
    • 1
    Email author
  • Laura Calvet
    • 2
    • 3
  • Angel A. Juan
    • 2
    • 3
  • Javier Faulin
    • 1
  • Lluc Bové
    • 2
    • 3
  1. 1.Institute of Smart CitiesPublic University of NavarraPamplonaSpain
  2. 2.IN3 - Computer Science, Multimedia and Telecommunication DepartmentOpen University of CataloniaBarcelonaSpain
  3. 3.Euncet Business SchoolTerrassaSpain

Personalised recommendations