Skip to main content
Log in

On branching heuristics for the bi-objective 0/1 unidimensional knapsack problem

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

This paper focuses on branching strategies that are involved in branch and bound algorithms when solving multi-objective optimization problems. The choice of the branching variable at each node of the search tree constitutes indeed an important component of these algorithms. In this work we focus on multi-objective knapsack problems. In the literature, branching heuristics used for these problems are static, i.e., the order on the variables is determined prior to the execution. This study investigates the benefit of defining more sophisticated branching strategies. We first analyze and compare a representative set of classic branching heuristics and conclude that none can be identified as the best overall heuristic. Using an oracle, we highlight that combining branching heuristics within the same branch and bound algorithm leads to considerably reduced search trees but induces high computational costs. Based on learning adaptive techniques, we propose then dynamic adaptive branching strategies that are able to select the suitable heuristic to apply at each node of the search tree. Experiments are conducted on the bi-objective 0/1 unidimensional knapsack problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The reduced oracle method using \(c=22\) heuristics is the oracle method, at the exception that the equalities on the quality measure are broken by giving the advantage to the branching heuristic with the best rank in the reduced oracle method.

References

  • Aneja, Y.P., Nair, K.P.K.: Bicriteria transportation problem. Manag. Sci. 25(1), 73–78 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

    Article  MATH  Google Scholar 

  • Balafrej, A., Bessière, C., Paparrizou, A.: Multi-armed bandits for adaptive constraint propagation. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015, pp. 290–296. AAAI Press (2015)

  • Bazgan, C., Hugot, H., Vanderpooten, D.: Implementing an efficient FPTAS for the 0–1 multi-objective knapsack problem. Eur. J. Oper. Res. 198(1), 47–56 (2009a)

    Article  MathSciNet  MATH  Google Scholar 

  • Bazgan, C., Hugot, H., Vanderpooten, D.: Solving efficiently the 0–1 multi-objective knapsack problem. Comput. Oper. Res. 36, 260–279 (2009b)

    Article  MathSciNet  MATH  Google Scholar 

  • Captivo, M.E., Clímaco, Ja, Figueira, J.R., Martins, E., Santos, J.L.: Solving bicriteria 0–1 knapsack problems using a labeling algorithm. Comput. Oper. Res. 30(12), 1865–1886 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  • Da Costa, L., Fialho, Á., Schoenauer, M., Sebag, M.: Adaptive operator selection with dynamic multi-armed bandits. In: Genetic and Evolutionary Computation Conference, GECCO 2008, Proceedings, Atlanta, GA, USA, July 12–16, 2008, pp. 913–920. ACM (2008)

  • DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection with dynamic multi-armed bandits. In: Proceedings of the 10th annual conference on genetic and evolutionary computation, vol. 5199, pp. 913–920 (2008)

  • Degoutin, F., Gandibleux, X.: Un retour d’expérience sur la résolution de problèmes combinatoires bi-objectifs. In 5e journée du groupe de travail Programmation Mathématique MultiObjectif (PM20), pp. 74–80 (2002)

  • Delort, C.: Algorithmes d’énumération implicite pour l’optimisation multi-objectifs exacte : exploration d’ensembles bornant et application aux problèmes de sac à dos et d’affectation. Ph.D. thesis, Université Pierre et Marie Curie Paris VI (2011)

  • Delort, C., Spanjaard, O.: Using bound sets in multiobjective optimization: Application to the biobjective binary knapsack problem. In: Festa, P., (ed.), SEA, volume 6049 of Lecture Notes in Computer Science, pp. 253–265. Springer (2010)

  • Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  • Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spectr. 22(4), 425–460 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Ehrgott, M., Gandibleux, X.: Bound sets for biobjective combinatorial optimization problems. Comput. Oper. Res. 34(9), 2674–2694 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Figueira, J.R., Paquete, L., Simões, M., Vanderpooten, D.: Algorithmic improvements on dynamic programming for the bi-objective 0,1 knapsack problem. Comput. Optim. Appl. 56(1), 97–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Florios, K., Mavrotas, G., Diakoulaki, D.: Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms. Eur. J. Oper. Res. 203(1), 14–21 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Gandibleux, X., Fréville, A.: Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: The two objectives case. J. Heuristics 6, 361–383 (2000)

    Article  MATH  Google Scholar 

  • Gandibleux, X., Perederieieva, O.: Some observations on the bi-objective 01 bi-dimensional knapsack problem. In: IFORS 2011 (19th Triennial Conference of the International Federation of Operational Research Societies). 10–15 July 2011, Melbourne, Australia (2011)

  • Gavish, B., Pirkul, H.: Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality. Math. Program. 31, 78–105 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Glover, F.: A multiphase-dual algorithm for the zero-one integer programming problem. Oper. Res. 13(6), 879–919 (1965)

    Article  MATH  Google Scholar 

  • Goldberg, D.E.: Probability matching, the magnitude of reinforcement, and classifier system bidding. Mach. Learn. 5(4), 407–425 (1990)

    Google Scholar 

  • Hamadi, Y., Monfroy, E., Saubion, F.: Autonomous Search. Springer, Berlin (2012)

    Book  Google Scholar 

  • Jorge, J.: Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires. Ph.D. thesis, Université de Nantes (2010)

  • Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  • Klamroth, K., Wiecek, M. M.: Dynamic programming approaches to the multiple criteria knapsack problem. Naval Res. Logistics, pp. 57–76 (2000)

  • Kolesar, P.J.: A branch and bound algorithm for the knapsack problem. Manag. Sci. 13(9), 723–735 (1967)

    Article  Google Scholar 

  • Loth, M., Sebag, M., Hamadi, Y., Schoenauer, M.: Bandit-based search for constraint programming. In: Principles and Practice of Constraint Programming—19th International Conference, CP 2013, Uppsala, Sweden, September 16–20, 2013. Proceedings, volume 8124 of Lecture Notes in Computer Science, pp. 464–480. Springer (2013)

  • Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for the 0–1 knapsack problem. Manag. Sci. 45(3), 414–424 (1999)

    Article  MATH  Google Scholar 

  • Martello, S., Toth, P.: Knapsack Problems : Algorithms and Computer Implementations. Wiley, New York (1990)

    MATH  Google Scholar 

  • Maturana, J., Fialho, A., Saubion, F., Schoenauer, M., Lardeux, F., Sebag, M.: Adaptive operator selection and management in evolutionary algorithms. In: Autonomous Search, pp. 161–189. Springer (2012)

  • Mavrotas, G., Florios, K.: An improved version of the augmented \(\varepsilon \)-constraint method (augmecon2) for finding the exact pareto set in multi-objective integer programming problems. Appl. Math. Comput. 219(18), 9652–9669 (2013)

    MathSciNet  MATH  Google Scholar 

  • Özpeynirci, Ö., Köksalan, M.: An exact algorithm for finding extreme supported nondominated points of multiobjective mixed integer programs. Manag. Sci. 56(12), 2302–2315 (2010)

    Article  MATH  Google Scholar 

  • Page, E.: Continuous inspection schemes. Biometrika 41, 100–115 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  • Pisinger, D.: Implementation of Combo. (2002) http://www.diku.dk/~pisinger/combo.c

  • Przybylski, A., Gandibleux, X.: Multi-objective branch and bound. Eur. J. Oper. Res. 260(3), 856–872 (2017)

    Article  MathSciNet  Google Scholar 

  • Przybylski, A., Gandibleux, X., Ehrgott, M.: A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives. Discrete Optim. 7(3), 149–165 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Shih, W.: A branch and bound method for the multiconstraint zero-one knapsack problem. J. Oper. Res. Soc. 30(4), 369–378 (1979)

    Article  MATH  Google Scholar 

  • Sourd, F., Spanjaard, O.: A multiobjective branch-and-bound framework: application to the biobjective spanning tree problem. INFORMS J. Comput. 20, 472–484 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Thesen, A.: A recursive branch and bound algorithm for the multidimensional knapsack problem. Naval Res. Logistics Quart. 22(2), 341–353 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Ulungu, E.L., Teghem, J.: The two phases method: an efficient procedure to solve bi-objective combinatorial optimization problems. Found. Comput. Decis. Sci. 20(2), 149–165 (1995)

    MathSciNet  MATH  Google Scholar 

  • Ulungu, E. L., Teghem, J.: Solving multi-objective knapsack problem by a branch-and-bound procedure. In: Multicriteria Analysis: Proceedings of the XIth International Conference on MCDM, 1–6 August 1994, Coimbra, Portugal, pp. 269–278 (1997)

  • Visée, M., Teghem, J., Pirlot, M., Ulungu, E.L.: Two-phases method and branch and bound procedures to solve the bi-objective knapsack problem. J. Global Optim. 12, 139–155 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, W., Reimann, M.: A simple augmented \(\epsilon \)-constraint method for multi-objective mathematical integer programming problems. Eur. J. Oper. Res. 234(1), 15–24 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the following projects: ANR-09-BLAN-0361 “GUaranteed Efficiency for PAReto optimal solutions Determination (GUEPARD)”, the project LigeRO, and the project ANR/DFG-14-CE35-0034-01 “Exact Efficient Solution of Mixed Integer Programming Problems with Multiple Objective Functions (vOpt)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey Cerqueus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerqueus, A., Gandibleux, X., Przybylski, A. et al. On branching heuristics for the bi-objective 0/1 unidimensional knapsack problem. J Heuristics 23, 285–319 (2017). https://doi.org/10.1007/s10732-017-9346-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-017-9346-9

Keywords

Navigation