Journal of Heuristics

, Volume 24, Issue 3, pp 395–423 | Cite as

Dynamic reconfiguration in multigroup multicast routing under uncertainty

  • Pavel TroubilEmail author
  • Hana Rudová
  • Petr Holub


Motivated by high quality multimedia and remote collaborative environments, we solve the problem of multigroup multicast routing with a number of features important for real-world deployment of the interactive media technologies. Based on the ant colony optimization metaheuristic, our algorithm is the first to work with uncertain knowledge of underlying network capabilities and support on-the-fly media transcoding inside the multicast tree. New contributions of this work are described next. We present two extensions of the algorithm, which improve quality of the solution. We introduce an integrated approach to solution of the problem, which is effective for both original solving from scratch as well as for new dynamic reconfiguration of multicast tree, where minimum perturbation of existing solution is desired. Experiments show that our algorithm is not only successful in maintaining existing communication with low number of unnecessary disruptions, but also capable of keeping the multicast trees efficient.


Networks Multicast routing Multimedia Uncertainty Online optimization 


  1. Akkuş, I.E., Öznur, Özkasap, Civanlar, M.R.: Peer-to-peer multipoint video conferencing with layered video. J. Netw. Comput. Appl. 34(1), 137–150 (2011)CrossRefGoogle Scholar
  2. Amutha, S., Nivethalakshmi, S.: Solution for multicast routing problem using particle swarm optimization. In: International Conference on Computing and Communications Technologies (ICCCT), pp. 267–272 (2015)Google Scholar
  3. Andersen, D.G., Balakrishnan, H., Kaashoek, M.F., Morris, R.: The case for resilient overlay networks. In: Proceedings of the Eighth Workshop on Hot Topics in Operating Systems, pp. 152–157 (2001)Google Scholar
  4. Banerjee, N., Das, S.: Fast determination of QoS-based multicast routes in wireless networks using genetic algorithm. IEEE Int. Conf. Commun. 8, 2588–2592 (2001)Google Scholar
  5. Chu, C.H., Gu, J., Hou, X.D., Gu, Q.: A heuristic ant algorithm for solving QoS multicast routing problem. In: Congress on Evolutionary Computation, 2002, vol. 2, pp. 1630–1635 (2002)Google Scholar
  6. DCI Digital Cinema System Specification v. 1.2. (2012)
  7. Deering, S., Estrin, D., Farinacci, D., Jacobson, V., Liu, C.G., Wei, L.: An architecture for wide-area multicast routing. SIGCOMM Comput. Commun. Rev. 24, 126–135 (1994)CrossRefGoogle Scholar
  8. Deering, S.E., Cheriton, D.R.: Multicast routing in datagram internetworks and extended lans. ACM Trans. Comput. Syst. 8, 85–110 (1990)CrossRefGoogle Scholar
  9. Dichev, K., Reid, F., Lastovetsky, A.: Efficient and reliable network tomography in heterogeneous networks using BitTorrent broadcasts and clustering algorithms. In: International Conference for High Performance Computing, Networking, Storage and Analysis (2012)Google Scholar
  10. Diot, C., Levine, B.N., Lyles, B., Kassem, H., Balensiefen, D.: Deployment issues for the IP multicast service and architecture. IEEE Netw. 14(1), 78–88 (2000)CrossRefGoogle Scholar
  11. Dressler, F.: Availability analysis in large scale multicast networks. In: 15th Parallel and Distributed Computing and Systems, pp. 399–403 (2003)Google Scholar
  12. Drioli, C., Allocchio, C., Buso, N.: Networked performances and natural interaction via LOLA: low latency high quality A/V streaming system. In: Information Technologies for Performing Arts, Media Access, and Entertainment, pp. 240–250. Springer (2013)Google Scholar
  13. Goldoni, E., Schivi, M.: End-to-end available bandwidth estimation tools, an experimental comparison. In: Traffic Monitoring and Analysis, pp. 171–182 (2010)Google Scholar
  14. Goldoni, E., Rossi, G., Torelli, A.: Assolo, a new method for available bandwidth estimation. In: Internet Monitoring and Protection, pp. 130–136 (2009)Google Scholar
  15. Guérin, R.A., Orda, A.: QoS routing in networks with inaccurate information: theory and algorithms. IEEE/ACM Trans. Netw. 7(3), 350–364 (1999)CrossRefGoogle Scholar
  16. Guo, L., Matta, I.: QDMR: an efficient QoS dependent multicast routing algorithm. In: IEEE Real-Time Technology and Applications Symposium, pp. 213–222 (1999)Google Scholar
  17. Holub, P., Rudová, H., Liška, M.: Data transfer planning with tree placement for collaborative environments. Constraints 16, 283–316 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Holub, P., Matela, J., Pulec, M., Šrom, M.: UltraGrid: low-latency high-quality video transmissions on commodity hardware. In: ACM Multimedia, pp. 1457–1460 (2012)Google Scholar
  19. Holub, P., Šrom, M., Pulec, M., Matela, J., Jirman, M.: GPU-accelerated DXT and JPEG compression schemes for low-latency network transmissions of HD, 2K, and 4K video. Future Gener. Comput. Syst. 29(8), 1991–2006 (2013)CrossRefGoogle Scholar
  20. Hosseini, M., Ahmed, D., Shirmohammadi, S., Georganas, N.: A survey of application-layer multicast protocols. Commun. Surv. Tutor. IEEE 9(3), 58–74 (2007)CrossRefGoogle Scholar
  21. Hutanu, A., Allen, G., Beck, S.D., Holub, P., Kaiser, H., Kulshrestha, A., Liška, M., MacLaren, J., Matyska, L., Paruchuri, R., et al.: Distributed and collaborative visualization of large data sets using high-speed networks. Future Gener. Comput. Syst. 22(8), 1004–1010 (2006)CrossRefGoogle Scholar
  22. Jain, M., Dovrolis, C.: Pathload: a measurement tool for end-to-end available bandwidth. In: Passive and Active Measurements, pp. 14–25 (2002)Google Scholar
  23. Lee, C.Y., Cho, H.K.: Multiple multicast tree allocation in IP network. Comput. Oper. Res. 31(7), 1115–1133 (2004)CrossRefzbMATHGoogle Scholar
  24. Liang, C., Zhao, M., Liu, Y.: Optimal bandwidth sharing in multiswarm multiparty P2P video-conferencing systems. IEEE/ACM Trans. Netw. 19(6), 1704–1716 (2011)CrossRefGoogle Scholar
  25. Liška, M.: Self-organizing collaborative environments. PhD thesis, Masaryk University, Faculty of Informatics (2010)Google Scholar
  26. Liška, M., Holub, P.: CoUniverse: framework for building self-organizing collaborative environments using extreme-bandwidth media applications. In: Euro-Par 2008 Workshops—Parallel Processing, pp. 339–351 (2009)Google Scholar
  27. Lorenz, D., Orda, A.: QoS routing in networks with uncertain parameters. IEEE/ACM Trans. Netw. 6(6), 768–778 (1998)CrossRefGoogle Scholar
  28. Malekzadeh, A., MacGregor, M.H.: Network topology inference from end-to-end unicast measurements. In: Advanced Information Networking and Applications Workshops (WAINA), pp. 1101–1106 (2013)Google Scholar
  29. Marinakis, Y., Migdalas, A.: A particle swarm optimization algorithm for the multicast routing problem. In: Models, Algorithms and Technologies for Network Analysis: From the Third International Conference on Network Analysis, pp. 69–91 (2014)Google Scholar
  30. Marinakis, Y., Marinaki, M., Migdalas, A.: A Hybrid Discrete Artificial Bee Colony Algorithm for the Multicast Routing Problem, pp. 203–218 (2016)Google Scholar
  31. Mokhtarian, K., Jacobsen, H.A.: Minimum-delay overlay multicast. In: IEEE INFOCOM, pp. 1771–1779 (2013)Google Scholar
  32. Pantelidou, A., Ephremides, A.: Minimum-length scheduling for multicast traffic under channel uncertainty. In: IEEE GLOBECOM (2009)Google Scholar
  33. Ponec, M., Sengupta, S., Chen, M., Li, J., Chou, P.A.: Multi-rate peer-to-peer video conferencing: a distributed approach using scalable coding. In: IEEE International Conference on Multimedia and Expo, pp. 1406–1413 (2009)Google Scholar
  34. Qu, R., Xu, Y., Castro, J.P., Landa-Silva, D.: Particle swarm optimization for the steiner tree in graph and delay-constrained multicast routing problems. J. Heuristics 19(2), 317–342 (2013)CrossRefGoogle Scholar
  35. Ribeiro, V.J., Riedi, R.H., Baraniuk, R.G., Navratil, J., Cottrell, L.: pathchirp: Efficient available bandwidth estimation for network paths. In: Passive and Active Measurement Workshop (2003)Google Scholar
  36. Roy, A., Das, S.K.: QM2RP: a QoS-based mobile multicast routing protocol using multi-objective genetic algorithm. Wirel. Netw. 10(3), 271–286 (2004)CrossRefGoogle Scholar
  37. Shen, M., Zhan, Z.H., Chen, W.N., Gong, Y.J., Zhang, J., Li, Y.: Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks. IEEE Trans. Ind. Electron. 61(12), 7141–7151 (2014)CrossRefGoogle Scholar
  38. Shen, Y., Li, K., Xu, J., Li, L.: Layered video multicast with a P2P cooperation approach. J. Netw. Comput. Appl. 34(4), 1108–1112 (2011)CrossRefGoogle Scholar
  39. Shriram, A., Kaur, J.: Empirical evaluation of techniques for measuring available bandwidth. In: IEEE INFOCOM, pp. 2162–2170 (2007)Google Scholar
  40. Sun, B., Li, L.: A QoS multicast routing optimization algorithm based on genetic algorithm. Commun. Netw. 8(1), 116–122 (2006)CrossRefGoogle Scholar
  41. Sun, J., Liu, J., Xu, W.: QPSO-based QoS multicast routing algorithm. In: Simulated Evolution and Learning. LNCS, vol. 4247. Springer, pp. 261–268 (2006)Google Scholar
  42. Thouin, F., Coates, M., Rabbat, M.: Large scale probabilistic available bandwidth estimation. Comput. Netw. 55(9), 2065–2078 (2011)CrossRefGoogle Scholar
  43. Troubil, P., Rudová, H., Holub, P.: Media streams planning with transcoding. In: IEEE Network Computing and Applications (NCA), pp .41–48 (2013)Google Scholar
  44. Troubil, P., Rudová, H., Holub, P.: Media streams planning with uncertain link capacities. In: IEEE Network Computing and Applications (NCA), pp. 197–204 (2014)Google Scholar
  45. Wang, H., Xu, H., Yi, S., Shi, Z.: A tree-growth based ant colony algorithm for QoS multicast routing problem. Expert Syst. Appl. 38(9), 11,787–11,795 (2011)CrossRefGoogle Scholar
  46. Watford, M.: Uncompressed HD/3G-SDI over carrier ethernet. In: CineGrid Workshop (2011)Google Scholar
  47. Xiang, F., Junzhou, L., Jieyi, W., Guanqun, G.: Qos routing based on genetic algorithm. Comput. Commun. 22(15–16), 1392–1399 (1999)CrossRefGoogle Scholar
  48. Yen, Y., Chao, H., Chang, R., Vasilakos, A.: Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Math. Comput. Model. 53(11–12), 2238–2250 (2011)CrossRefGoogle Scholar
  49. Yeo, C., Lee, B., Er, M.: A survey of application level multicast techniques. Comput. Commun. 27(15), 1547–1568 (2004)CrossRefGoogle Scholar
  50. Zahrani, M.S., Loomes, M.J., Malcolm, J.A., Ullah, A., Steinhöfel, K., Albrecht, A.A.: Genetic local search for multicast routing with pre-processing by logarithmic simulated annealing. Comput. Oper. Res. 35, 2049–2070 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  51. Zhang, X., Zhang, X., Gu, C.: A micro-artificial bee colony based multicast routing in vehicular ad hoc networks. Ad Hoc Netw. 58, 213–221 (hybrid Wirel. Ad Hoc Netw. (2017)) Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  2. 2.Institute of Computer ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations