Advertisement

Journal of Heuristics

, Volume 24, Issue 3, pp 345–357 | Cite as

Simple but effective heuristics for the 2-constraint bin packing problem

  • Roberto AringhieriEmail author
  • Davide Duma
  • Andrea Grosso
  • Pierre Hosteins
Article

Abstract

The 2-constraint bin packing problem consists in packing a given number of items, each one characterised by two different but not related dimensions, into the minimum number of bins in such a way to do not exceed the capacity of the bins in either dimension. The development of the heuristics for this problem is challenged by the need of a proper definition of the criterion for evaluating the feasibility of the two capacity constraints on the two different dimensions. In this paper, we propose a computational evaluation of several criteria, and two simple but effective algorithms—a greedy and neighbourhood search algorithms—for solving the 2-constraint bin packing problem. An extensive computational analysis supports our main claim.

Keywords

2-constraint bin packing problem Criteria Heuristics 

Notes

Acknowledgements

The authors would thank the students Gianluca Bortignon and Federico Iannicelli for running part of the computational tests.

References

  1. Alves, C., de Carvalho, J.V., Clautiaux, F., Rietz, J.: Multidimensional dual-feasible functions and fast lower bounds for the vector packing problem. Eur. J. Oper. Res. 233(1), 43–63 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Aringhieri, R.: Composing medical crews with equity and efficiency. Cent. Eur. J. Oper. Res. 17(3), 343–357 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Aringhieri, R., Dell’Amico, M.: Comparing metaheuristic algorithms for sonet network design problems. J. Heuristics 11(1), 35–57 (2005a)CrossRefzbMATHGoogle Scholar
  4. Aringhieri, R., Dell’Amico, M.: Solution of the SONET ring assignment problem with capacity constraints. In: Rego, C., Alidaee, B. (eds.) Metaheuristic Optimization via Memory and Evolution. Tabu Search and Scatter Search, pp. 93–116. Kluwer, Dordrecht (2005b)CrossRefGoogle Scholar
  5. Aringhieri, R., Landa, P., Soriano, P., Tànfani, E., Testi, A.: A two level metaheuristic for the operating room scheduling and assignment problem. Comput. Oper. Res. 54, 21–34 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Aringhieri, R., Bruglieri, M., Malucelli, F., Nonato, M.: A special vrp arising in the optimization of waste disposal: a real case. Transp. Sci. (2016). http://hdl.handle.net/2318/1596992
  7. Billaut, J.C., Della Croce, F., Grosso, A.: A single machine scheduling problem with two-dimensional vector packing constraints. Eur. J. Oper. Res. 243(1), 75–81 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Caprara, A., Toth, P.: Lower bounds and algorithms for the 2-dimensional vector packing problem. Discret. Appl. Math. 111(3), 231–262 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Della Croce, F., Ghirardi, M., Tadei, R.: Recovering beam search: enhancing the beam search approach for combinatorial optimization problems. J. Heuristics 10, 1089 (2004)zbMATHGoogle Scholar
  10. Garey, M., Graham, R., Johnson, D., Yao, A.: Resource constrained scheduling as generalized bin packing. J. Comb. Theory Ser. A 21(3), 257–298 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Gendreau, M., Hertz, A., Laporte, G.: A tabu search heuristic for the vehicle routing problem. Manag. Sci. 40(10), 1276–1290 (1994)CrossRefzbMATHGoogle Scholar
  12. Guazzone, M., Anglano, C., Aringhieri, R., Sereno, M.: Distributed coalition formation in energy-aware cloud federations: a game-theoretic approach (extended version). CoRR abs/1309.2444 (2013). http://arxiv.org/abs/1309.2444
  13. Kellerer, H., Kotov, V.: An approximation algorithm with absolute worst-case performance ratio 2 for two-dimensional vector packing. Oper. Res. Lett. 31(1), 35–41 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  15. Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementations. In: Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1990)Google Scholar
  16. Monaci, M., Toth, P.: A set-covering-based heuristic approach for bin-packing problems. INFORMS J. Comput. 18(1), 71–85 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Shachnai, H., Tamir, T.: Approximation schemes for generalized two-dimensional vector packing with application to data placement. J. Discret. Algorithms 10(1), 35–48 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Spieksma, F.C.: Branch-and-bound algorithm for the two-dimensional vector packing problem. Comput. Oper. Res. 21(1), 19–25 (1994)CrossRefzbMATHGoogle Scholar
  19. Wilcox, D., McNabb, A., Seppi, K.: Solving virtual machine packing with a reordering grouping genetic algorithm. In: 2011 IEEE Congress of Evolutionary Computation (CEC 2011), pp. 362–369 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Roberto Aringhieri
    • 1
    Email author
  • Davide Duma
    • 1
  • Andrea Grosso
    • 1
  • Pierre Hosteins
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di TorinoTurinItaly

Personalised recommendations