Abstract
Stochastic local search (SLS) is an appealing method for solving the maximum satisfiability (Max-SAT) problem. This paper proposes a new variable selection heuristic for Max-SAT local search algorithms, which works particularly well for weighted Max-2-SAT instances. Evolving from the recent configuration checking strategy, this new heuristic works in three levels and is called CCTriplex. According to the CCTriplex heuristic, a variable that is both decreasing and configuration changed has the higher priority to be flipped than a decreasing variable, which in turn has the higher priority than a configuration changed variable. The CCTriplex heuristic is used to develop a new SLS algorithm for weighted Max-2-SAT called CCMaxSAT. We evaluate CCMaxSAT on random benchmarks with different densities, and the hand crafted Frb benchmark, as well as weighted Max-2-SAT instances encoded from MaxCut, MaxClique and sports scheduling problems. Compared with the state-of-the-art SLS solver for weighted Max-2-SAT called ITS and the best SLS solver in Max-SAT Evaluation 2012 namely ubcsat-IRoTS, as well as the famous complete solver wMaxSATz, our algorithm CCMaxSAT shows rather good performance on all the benchmarks.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
References
Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196, 77–105 (2013)
Cai, S., Su, K.: Local search with configuration checking for SAT. In: Proceeding of the ICTAI-11, pp. 59–66 (2011)
Cai, S., Su, K.: Configuration checking with aspiration in local search for SAT. In: Proceedings of the AAAI-12, pp. 434–440 (2012)
Cai, S., Su, K.: Local search for Boolean satisfiability with configuration checking and subscore. Artif. Intell. 204, 75–98 (2013)
Cai, S., Su, K., Sattar, A.: Local search with edge weighting and configuration checking heuristics for minimum vertex cover. Artif. Intell. 175(9–10), 1672–1696 (2011)
Cai, S., Su, K., Luo, C., Sattar, A.: NuMVC: an efficient local search algorithm for minimum vertex cover. J. Artif. Intell. Res. 46, 687–716 (2013)
Dimitropoulos, X., Krioukov, D., Fomenkov, M., Huffaker, B., Hyun, Y., Claffy, K., Riley, G.: As relationships: inference and validation. Comput. Commun. Rev. 37(1), 29–40 (2007)
Festa, P., Pardalos, P., Pitsoulis, L., Resende, M.: GRASP with path relinking for the weighted Max-SAT problem. ACM J. Exp. Algorithmics (11) (2006)
Glover, F.: Tabu search—part I. INFORMS J. Comput. 1(3), 190–206 (1989)
Gramm, J., Hirsch, E., Niedermeier, R., Rossmanith, P.: Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT. Discret. Appl. Math. 130(2), 139–155 (2003)
Grosso, A., Locatelli, M., Pullan, W.: Simple ingredients leading to very efficient heuristics for the maximum clique problem. J. Heuristics 14(6), 587–612 (2008)
Haanpää, H., Kaski, P.: The near resolvable 2-(13, 4, 3) designs and thirteen-player whist tournaments. Des. Codes. Cryptogr. 35(3), 271–285 (2005)
Heras, F., Bañeres, D.: The impact of Max-SAT resolution-based preprocessors on local search solvers. J. Satisf. Boolean Model. Comput. 7, 89–126 (2010)
Heras, F., Larrosa, J., Oliveras, A.: MiniMax-SAT: an efficient weighted max-sat solver. J. Artif. Intell. Res. (JAIR) 31, 1–32 (2008)
Hoos, H.H.: On the Run-time Behaviour of Stochastic Local Search Algorithms for SAT. In: Proceedings of the AAAI-99, pp. 661–666 (1999)
Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of the AAAI-02, pp. 655–660 (2002)
Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Elsevier, Amsterdam (2004)
Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing: efficient dynamic local search for SAT. In: Proceedings of the CP-02, pp. 233–248 (2002)
Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding partiality and disjunctions in stable model semantics. ACM Trans. Comput. Log. 7(1), 1–37 (2006)
Kastner, R., Bozorgzadeh, E., Sarrafzadeh, M.: Pattern routing: use and theory for increasing predictability and avoiding coupling. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 233–248 (2002)
Kochenberger, G., Glover, F., Alidaee, B., Lewis, K.: Using the unconstrained quadratic program to model and solve Max-2-SAT problems. Int. J. Oper. Res. 1, 89–100 (2005)
Kroc, L., Sabharwal, A., Gomes, C., Selman, B.: Integrating systematic and local search paradigms: a new strategy for MaxSAT. In: Proceedings of the IJCAI-09, pp. 544–551 (2009)
Li, C., Huang, W.: Diversification and determinism in local search for satisfiability. In: Proceedings of the SAT-05, pp. 158–172 (2005)
Li, C., Manyà, F., Planes, J.: New inference rules for Max-SAT. J. Artif. Intell. Res. (JAIR) 30, 321–359 (2007)
Li, C., Manyà, F., Mohamedou, N., Planes, J.: Exploiting cycle structures in Max-SAT. In: Proceedings of the SAT-09, pp. 467–480 (2009)
Li, C., Wei, W., Zhang, H.: Combining adaptive noise and look-ahead in local search for SAT. In: Proceedings of the SAT-07, pp. 121–133 (2007)
Lin, H., Su, K., Li, C.: Within-problem learning for efficient lower bound computation in max-sat solving. In: Proceedings of the AAAI-08, pp. 351–356 (2008)
Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic boolean satisfiability. J. Autom. Reason. 27(3), 251–296 (2001)
Luo, C., Su, K., Cai, S.: Improving local search for random 3-SAT using quantitative configuration checking. In: Proceedings of the ECAI-12, pp. 570–575 (2012)
Luo, C., Cai, S., Wu, W., Su, K.: Focused random walk with configuration checking and break minimum for satisfiability. In: Proceedings of the CP-13, pp. 481–496 (2013)
Palubeckis, G.: Solving the weighted Max-2-SAT problem with iterated tabu search. J. Inf. Technol. Control 37, 275–284 (2008)
Pullan, W., Mascia, F., Brunato, M.: Cooperating local search for the maximum clique problem. J. Heuristics 17(2), 181–199 (2011)
Ryuhei, M., Tomomi, M.: Semidefinite programming based approaches to the break minimization problem. Comput. OR 33, 1975–1982 (2006)
Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In: Proceedings of the AAAI-94, pp. 337–343 (1994)
Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell. 138(1–2), 181–234 (2002)
Smyth, K., Hoos, H.H., Stützle, T.: Iterated robust tabu search for MAX-SAT. In: Proceedings of the Canadian Conference on AI, pp. 129–144 (2003)
Staub, R., Prautzsch, H.: Creating optimized cutout sheets for paper models from meshes. In: Ninth SIAM Conference on Geometric Design and Computing (2005)
Wu, Z., Wah, B.W.: An efficient global-search strategy in discrete lagrangian methods for solving hard satisfiability problems. In: Proceedings of the AAAI-00, pp. 310–315 (2000)
Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: A simple model to generate hard satisfiable instances. In: Proceedings of the IJCAI-05, pp. 337–342 (2005)
Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: Random constraint satisfaction: easy generation of hard (satisfiable) instances. Artif. Intell. 171(8–9), 514–534 (2007)
Acknowledgments
We would like to thank the anonymous reviewers for their valuable comments, which helped to improve the quality of this article. This work is supported by China National 973 project 2014CB340301, ARC Future Fellowship FT0991785, and National Natural Science Foundation of China 61370072 and 61472369.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cai, S., Jie, Z. & Su, K. An effective variable selection heuristic in SLS for weighted Max-2-SAT. J Heuristics 21, 433–456 (2015). https://doi.org/10.1007/s10732-015-9284-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10732-015-9284-3