Advertisement

Journal of Heuristics

, Volume 22, Issue 4, pp 539–566 | Cite as

A hybrid metaheuristic for the vehicle routing problem with stochastic demand and duration constraints

  • Jorge E. MendozaEmail author
  • Louis-Martin Rousseau
  • Juan G. Villegas
Article

Abstract

The vehicle routing problem with stochastic demands (VRPSD) consists in designing optimal routes to serve a set of customers with random demands following known probability distributions. Because of demand uncertainty, a vehicle may arrive at a customer without enough capacity to satisfy its demand and may need to apply a recourse to recover the route’s feasibility. Although travel times are assumed to be deterministic, because of eventual recourses the total duration of a route is a random variable. We present two strategies to deal with route-duration constraints in the VRPSD. In the first, the duration constraints are handled as chance constraints, meaning that for each route, the probability of exceeding the maximum duration must be lower than a given threshold. In the second, violations to the duration constraint are penalized in the objective function. To solve the resulting problem, we propose a greedy randomized adaptive search procedure (GRASP) enhanced with heuristic concentration (HC). The GRASP component uses a set of randomized route-first, cluster-second heuristics to generate starting solutions and a variable-neighborhood descent procedure for the local search phase. The HC component assembles the final solution from the set of all routes found in the local optima reached by the GRASP. For each strategy, we discuss extensive computational experiments that analyze the impact of route-duration constraints on the VRPSD. In addition, we report state-of-the-art solutions for a established set of benchmarks for the classical VRPSD.

Keywords

Distance-constrained vehicle routing problem Vehicle routing problem with stochastic demands Two-stage stochastic programming GRASP Heuristic concentration 

Notes

Acknowledgments

This research was partially funded by the Region Pays de la Loire (France) through project LigéRO, Universidad de Antioquia (Colombia) through project CODI MDC11-01-09, and École Polytechnique de Montréal (Canada). The authors would like to thank Charles Gauvin at CIRRELT (Montreal) for providing the optimal solutions for the VRSPD instances used in Sect. 4.1.

References

  1. Ak, A., Erera, A.: A paired-vehicle recourse strategy for the vehicle-routing problem with stochastic demands. Transp. Sci. 41(2), 222–237 (2007)CrossRefGoogle Scholar
  2. Bent, R., Van Hentenryck, P.: Scenario-based planning for partially dynamic vehicle routing with stochastic customers. Oper. Res. 52(6), 977–987 (2004)CrossRefzbMATHGoogle Scholar
  3. Bent, R., Van Hentenryck, P.: Waiting and relocation strategies in online stochastic vehicle routing. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI’07), pp. 1816–1821 (2007)Google Scholar
  4. Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M., Paquete, L., Rossi-Doria, O., Schiavinotto, T.: Metaheuristics for the vehicle routing problem with stochastic demands. Parallel Problem Solving from Nature—PPSN VIII. Lecture Notes in Computer Science, pp. 450–460. Springer, Berlin (2004)CrossRefGoogle Scholar
  5. Christiansen, C., Lysgaard, J.: A branch-and-price algorithm for the capacitated vehicle routing problem with stochastic demands. Oper. Res. Lett. 35(6), 773–781 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Contardo, C., Cordeau, J.F., Gendron, B.: A GRASP + ILP-based metaheuristic for the capacitated location-routing problem. J. Heuristics 20(1), 1–38 (2014)MathSciNetCrossRefGoogle Scholar
  7. Cordeau, J.F., Laporte, G., Savelsbergh, M., Vigo, D.: Vehicle routing. In: Barnhart, C., Laporte, G. (eds.) Handbooks in Operations Research and Management Science: Transportation, vol. 14, pp. 367–428. Elsevier, Amsterdam (2006)Google Scholar
  8. Erera, A., Morales, J.C., Savelsbergh, M.: The vehicle routing problem with stochastic demands and duration constraints. Transp. Sci. 44(4), 474–492 (2010)CrossRefGoogle Scholar
  9. Gauvin, C.: Un algorithme de génération de colonnes pour le problème de tournées de véhicules avec demandes stochastiques. Master’s thesis, École Polytechnique de Montréal (2012)Google Scholar
  10. Gendreau, M., Laporte, G., Séguin, R.: A tabu search heuristic for the vehicle routing problem with stochastic demands and customers. Oper. Res. 44(3), 469–477 (1996b)CrossRefzbMATHGoogle Scholar
  11. Goodson, J.C., Ohlmann, J.W., Thomas, B.W.: Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand. Eur. J. Oper. Res. 227(2), 312–323 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Goodson, J.C., Ohlmann, J.W., Thomas, B.W.: Rollout policies for dynamic solutions to the multivehicle routing problem with stochastic demand and duration limits. Oper. Res. 61(1), 138–154 (2013)Google Scholar
  13. Goodson, J.C., Thomas, B.W., Ohlmann, J.W.: Restocking-based rollout policies for the vehicle routing problem with stochastic demand and duration limits. To appear in Transportation ScienceGoogle Scholar
  14. Hansen, P., Mladenović, N., Moreno-Pérez, J.: Variable neighbourhood search: Methods and applications. 4OR: A Quart. J. Oper. Res. 6, 319–360 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Haugland, D., Ho, S., Laporte, G.: Designing delivery districts for the vehicle routing problem with stochastic demands. Eur. J. Oper. Res. 180(3), 997–1010 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Mendoza, J.E., Castanier, B., Guéret, C., Medaglia, A.L., Velasco, N.: A simulation-based MOEA for the multi-compartment vehicle routing problem with stochastic demands. In: Proceedings of the VIII Metaheuristics International Conference (MIC). Hamburg, Germany (2009)Google Scholar
  17. Mendoza, J.E., Castanier, B., Guéret, C., Medaglia, A.L., Velasco, N.: A memetic algorithm for the multi-compartment vehicle routing problem with stochastic demands. Comput. Oper. Res. 37(11), 1886–1898 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Mendoza, J.E., Castanier, B., Guéret, C., Medaglia, A.L., Velasco, N.: Constructive heuristics for the multicompartment vehicle routing problem with stochastic demands. Transp. Sci. 45(3), 335–345 (2011)CrossRefGoogle Scholar
  19. Mendoza, J.E., Guéret, C., Hoskins, M., Lobit, H., Pillac, V., Vidal, T., Vigo, D.: VRP-REP: the vehicle routing community repository. In: Third Meeting of the EURO Working Group on Vehicle Routing and Logistics Optimization (VeRoLog). Oslo, Norway (2014)Google Scholar
  20. Mendoza, J.E., Villegas, J.G.: A multi-space sampling heuristic for the vehicle routing problem with stochastic demands. Optim. Lett. 7(7), 1503–1516 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Novoa, C., Berger, R., Linderoth, J., Storer, R.: A set-partitioning-based model for the stochastic vehicle routing problem. Texas State University, Tech. rep. (2006)Google Scholar
  22. Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic vehicle routing problems. Eur. J. Oper. Res. 225(1), 1–11 (2013a)MathSciNetCrossRefzbMATHGoogle Scholar
  23. Pillac, V., Guret, C., Medaglia, A.L.: A parallel matheuristic for the technician routing and scheduling problem. Optim. Lett. 7(7), 1525–1535 (2013b)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Comput. Oper. Res. 31(12), 1985–2002 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Rosing, K.E., Revelle, C.S.: Heuristic concentration: two stage solution construction. Eur. J. Oper. Res. 17(96), 75–86 (1997)CrossRefzbMATHGoogle Scholar
  26. Savelsbergh, M., Goetschalckx, M.: A comparison of the efficiency of fixed versus variable vehicle routes. J. Bus. Logist. 16, 163–187 (1995)Google Scholar
  27. Secomandi, N., Margot, F.: Reoptimization approaches for the vehicle-routing problem with stochastic demands. Oper. Res. 57(1), 214–230 (2009)CrossRefzbMATHGoogle Scholar
  28. Sörensen, K., Sevaux, M.: MA\(|\)PM: memetic algorithms with population management. Comput. Oper. Res. 33(5), 1214–1225 (2006)CrossRefzbMATHGoogle Scholar
  29. Sörensen, K., Sevaux, M.: A practical approach for robust and flexible vehicle routing using metaheuristics and Monte Carlo sampling. J. Math. Model. Algorithms 8(4), 387–407 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Subramanian, A., Uchoa, E., Ochi, L.S.: A hybrid algorithm for a class of vehicle routing problems. Comput. Oper. Res. 40(10), 2519–2531 (2013)CrossRefGoogle Scholar
  31. Tan, K.C., Cheong, C.Y., Goh, C.K.: Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation. Eur. J. Oper. Res. 177(2), 813–839 (2007)CrossRefzbMATHGoogle Scholar
  32. Teodorović, D., Pavković, G.: A simulated annealing technique approach to the vehicle routing problem in the case of stochastic demands. Transp. Plan. Technol. 16(4), 261–273 (1992)CrossRefGoogle Scholar
  33. Tricoire, B.: Optimisation dans les réseaux logistiques: du terrain à la prospective. PhD thesis, Université d’Angers (France) (2013)Google Scholar
  34. Villegas, J.G., Prins, C., Prodhon, C., Medaglia, A.L., Velasco, N.: A matheuristic for the truck and trailer routing problem. Eur. J. Oper. Res. 230(2), 231–244 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. Yang, W.H., Mathur, K., Ballou, R.: Stochastic vehicle routing with restocking. Transp. Sci. 34(1), 99–112 (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jorge E. Mendoza
    • 1
    • 2
    Email author
  • Louis-Martin Rousseau
    • 3
  • Juan G. Villegas
    • 4
  1. 1.LUNAM Université, Université Catholique de l’Ouest, LARIS (EA 7315)AngersFrance
  2. 2.Université François-Rabelais de Tours, CNRS, LI EA 6300, OC ERL CNRS 6305ToursFrance
  3. 3.CIRRELT, École Polytechnique de MontréalMontrealCanada
  4. 4.Departamento de Ingeniería Industrial, Facultad de IngenieríaUniversidad de AntioquiaMedellínColombia

Personalised recommendations