Advertisement

Journal of Heuristics

, Volume 20, Issue 5, pp 589–615 | Cite as

Boosting local search with Lagrangian relaxation

  • Zhilei Ren
  • He JiangEmail author
  • Shuwei Zhang
  • Jingxuan Zhang
  • Zhongxuan Luo
Article
  • 294 Downloads

Abstract

Local search algorithms play an essential role in solving large-scale combinatorial optimization problems. Traditionally, the local search procedure is guided mainly by the objective function of the problem. Hence, the greedy improvement paradigm poses the potential threat of prematurely getting trapped in low quality attraction basins. In this study, we intend to utilize the information extracted from the relaxed problem, to enhance the performance of the local search process. Considering the Lin-Kernighan-based local search (LK-search) for the p-median problem as a case study, we propose the Lagrangian relaxation Assisted Neighborhood Search (LANS). In the proposed algorithm, two new mechanisms, namely the neighborhood reduction and the redundancy detection, are developed. The two mechanisms exploit the information gathered from the relaxed problem, to avoid the search from prematurely targeting low quality directions, and to cut off the non-promising searching procedure, respectively. Extensive numerical results over the benchmark instances demonstrate that LANS performs favorably to LK-search, which is among the state-of-the-art local search algorithms for the p-median problem. Furthermore, by embedding LANS into other heuristics, the best known upper bounds over several benchmark instances could be updated. Besides, run-time distribution analysis is also employed to investigate the reason why LANS works. The findings of this study confirm that the idea of improving local search by leveraging the information induced from relaxed problem is feasible and practical, and might be generalized to a broad class of combinatorial optimization problems.

Keywords

Local search p-median Lagrangian relaxation Lin-Kernighan neighborhood 

Notes

Acknowledgments

The authors would like to thank the anonymous reviewers for their insightful comments and suggestions. This work was supported in part by the Fundamental Research Funds for the Central Universities under Grant DUT13RC(3)53, in part by the New Century Excellent Talents in University under Grant NCET-13-0073, in part by China Postdoctoral Science Foundation under Grant 2014M551083, in part by National Program on Key Basic Research Project under Grant 2013CB035906, and in part by the National Natural Science Foundation of China under Grant 61175062 and Grant 61370144.

Supplementary material

10732_2014_9255_MOESM1_ESM.pdf (76 kb)
Supplementary material 1 (pdf 75 KB)

References

  1. Aiex, R.M., Resende, M.G., Ribeiro, C.C.: TTT plots: a perl program to create time-to-target plots. Optim. Lett. 1(4), 355–366 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  2. Alekseeva, E., Kochetov, Y., Plyasunov, A.: Complexity of local search for the p-median problem. Eur. J. Oper. Res. 191(3), 736–752 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. Avella, P., Sassano, A., Vasil’ev, I.: Computational study of large-scale p-median problems. Math. Program. 109(1), 89–114 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  4. Beasley, J.E.: Lagrangean heuristics for location problems. Eur. J. Oper. Res. 65(3), 383–399 (1993)CrossRefzbMATHGoogle Scholar
  5. Belov, A., Järvisalo, M., Stachniak, Z.: Depth-driven circuit-level stochastic local search for sat. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, vol. 1, pp. 504–509. AAAI Press, Menlo Park (2011)Google Scholar
  6. Bennell, J., Song, X.: A beam search implementation for the irregular shape packing problem. J. Heuristics 16(2), 167–188 (2010)CrossRefzbMATHGoogle Scholar
  7. Brimberg, J., Mladenović, N., Urošević, D.: Local and variable neighborhood search for the k-cardinality subgraph problem. J. Heuristics 14(5), 501–517 (2008)CrossRefzbMATHGoogle Scholar
  8. Brueggemann, T., Hurink, J.L.: Matching based very large-scale neighborhoods for parallel machine scheduling. J. Heuristics 17(6), 637–658 (2011)CrossRefzbMATHGoogle Scholar
  9. Ceschia, S., Schaerf, A.: Local search for a multi-drop multi-container loading problem. J. Heuristics 19(2), 275–294 (2013)CrossRefGoogle Scholar
  10. Christofides, N., Beasley, J.E.: A tree search algorithm for the p-median problem. Eur. J. Oper. Res. 10(2), 196–204 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  11. Climer, S., Zhang, W.: Searching for backbones and fat: a limit-crossing approach with applications. In: Proceedings of The National Conference on Artificial Intelligence, pp 707–712. AAAI Press, Menlo Park (2002)Google Scholar
  12. Croce, F., Ghirardi, M., Tadei, R.: Recovering beam search: enhancing the beam search approach for combinatorial optimization problems. J. Heuristics 10(1), 89–104 (2004)CrossRefzbMATHGoogle Scholar
  13. Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1–3), 23–47 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  14. García, S., Labbé, M., Marín, A.: Solving large p-median problems with a radius formulation. INFORMS J. Comput. 23(4), 546–556 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  15. Glover, F.: Tabu search-part I. ORSA J. Comput. 1(3), 190–206 (1989)CrossRefzbMATHGoogle Scholar
  16. Glover, F.: Tabu search-part II. ORSA J. Comput. 2(1), 4–32 (1990)CrossRefzbMATHGoogle Scholar
  17. Gutin, G., Karapetyan, D.: Local search heuristics for the multidimensional assignment problem. Graph Theory, Computational Intelligence and Thought, pp. 100–115. Springer, Berlin (2009)CrossRefGoogle Scholar
  18. Hakimi, S.L.: Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 12(3), 450–459 (1964)CrossRefzbMATHGoogle Scholar
  19. Hansen, P., Mladenovic, N.: Variable neighborhood search for the p-median. Locat. Sci. 5(4), 207–226 (1997)CrossRefzbMATHGoogle Scholar
  20. Helsgaun, K.: General k-opt submoves for the Lin–Kernighan TSP heuristic. Math. Program. Comput. 1(2–3), 119–163 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  21. Hoos, H.H., Stützle, T.: Stochastic Local Search. Foundations and Applications. Elsevier, Amsterdam (2005)zbMATHGoogle Scholar
  22. Järvinen, P., Rajala, J., Sinervo, H.: A branch-and-bound algorithm for seeking the p-median. Oper. Res. 20(1), 173–178 (1972)CrossRefzbMATHGoogle Scholar
  23. Kernighan, B., Lin, S.: An eflicient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 29, 209 (1970)Google Scholar
  24. Kochetov, Y., Levanova, T., Alekseeva, E., Loresh, M.: Large neighborhood local search for the p-median problem. Yugosl. J. Oper. Res. 15(1), 53–63 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  25. Li, C.M., Quan, Z.: An efficient branch-and-bound algorithm based on MaxSAT for the maximum clique problem. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, pp. 128–133 (2010)Google Scholar
  26. Mladenovic, N., Brimberg, J., Hansen, P., Moreno-Prez, J.A.: The p-median problem: a survey of metaheuristic approaches. Eur. J. Oper. Res. 179(3), 927–939 (2007)CrossRefzbMATHGoogle Scholar
  27. Puchinger, J., Raidl, G.R.: Bringing order into the neighborhoods: relaxation guided variable neighborhood search. J. Heuristics 14(5), 457–472 (2008)CrossRefzbMATHGoogle Scholar
  28. Pullan, W.: A population based hybrid metaheuristic for the p-median problem. In: 2008 IEEE Congress on Evolutionary Computation, pp. 75–82 (2008)Google Scholar
  29. Reese, J.: Solution methods for the p-median problem: an annotated bibliography. Networks 48(3), 125–142 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  30. Reinelt, G.: TSPLIB-a traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991)CrossRefzbMATHGoogle Scholar
  31. Ren, Z., Jiang, H., Xuan, J., Hu, Y., Luo, Z.: New insights into diversification of hyper-heuristics. IEEE Trans. Cybern (in press) (2013)Google Scholar
  32. Ren, Z., Jiang, H., Xuan, J., Luo, Z.: An accelerated-limit-crossing-based multilevel algorithm for the p-median problem. IEEE Trans. Syst. Man Cybern. B 42(4), 1187–1202 (2012a)CrossRefGoogle Scholar
  33. Ren, Z., Jiang, H., Xuan, J., Luo, Z.: Hyper-heuristics with low level parameter adaptation. Evol. Comput. 20(2), 189–227 (2012b)CrossRefGoogle Scholar
  34. Resende, M.G., Werneck, R.F.: On the implementation of a swap-based local search procedure for the p-median problem. In: Proceedings of the Fifth Workshop on Algorithm Engineering and Experiments, pp. 119–127 (2003)Google Scholar
  35. Resende, M.G.C., Werneck, R.F.: A hybrid heuristic for the p-median problem. J. Heuristics 10(1), 59–88 (2004)CrossRefzbMATHGoogle Scholar
  36. Riise, A., Burke, E.K.: Local search for the surgery admission planning problem. J. Heuristics 17(4), 389–414 (2011)CrossRefGoogle Scholar
  37. Rosing, K.E., Revelle, C.S., Schilling, D.A.: A gamma heuristic for the p-median problem. Eur. J. Oper. Res. 117(3), 522–532 (1999)CrossRefzbMATHGoogle Scholar
  38. Senne, E., Lorena, L.: Lagrangean/surrogate heuristics for p-median problems. Computing Tools for Modeling, Optimization and Simulation: Interfaces in Computer Science and Operations Research. Kluwer Academic, Dordrecht (2000)Google Scholar
  39. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 6:1–6:25 (2009)Google Scholar
  40. Teitz, M.B., Bart, P.: Heuristic methods for estimating the generalized vertex median of a weighted graph. Oper. Res. 16(5), 955–961 (1968)CrossRefzbMATHGoogle Scholar
  41. Vela, C.R., Varela, R., González, M.A.: Local search and genetic algorithm for the job shop scheduling problem with sequence dependent setup times. J. Heuristics 16(2), 139–165 (2010)CrossRefzbMATHGoogle Scholar
  42. Whitaker, R.: A fast algorithm for the greedy interchange for large-scale clustering and median location problems. INFOR J. 21(2), 95–108 (1983)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zhilei Ren
    • 1
  • He Jiang
    • 1
    Email author
  • Shuwei Zhang
    • 1
  • Jingxuan Zhang
    • 1
  • Zhongxuan Luo
    • 1
  1. 1.School of SoftwareDalian University of TechnologyDalianChina

Personalised recommendations