Skip to main content
Log in

The efficiency of indicator-based local search for multi-objective combinatorial optimisation problems

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

In the last few years, a significant number of multi-objective metaheuristics have been proposed in the literature in order to address real-world problems. Local search methods play a major role in many of these metaheuristic procedures. In this paper, we adapt a recent and popular indicator-based selection method proposed by Zitzler and Künzli in 2004, in order to define a population-based multi-objective local search. The proposed algorithm is designed in order to be easily adaptable, parameter independent and to have a high convergence rate. In order to evaluate the capacity of our algorithm to reach these goals, a large part of the paper is dedicated to experiments. Three combinatorial optimisation problems are tested: a flow shop problem, a ring star problem and a nurse scheduling problem. The experiments show that our algorithm can be applied with success to different types of multi-objective optimisation problems and that it outperforms some classical metaheuristics. Furthermore, the parameter sensitivity analysis enables us to provide some useful guidelines about how to set the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts, E., Korst, J., Michiels, W.: Simulated annealing. In: Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. Springer, Berlin (2005), Chap. 7

    Google Scholar 

  • Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: IEEE Congress on Evolutionary Computation (CEC 2005), vol. 2, pp. 1769–1776 (2005)

    Chapter  Google Scholar 

  • Basseur, M.: Design of cooperative algorithms for multi-objective optimization: application to the flow-shop scheduling problem. PhD thesis, University of Sciences and Technology of Lille, France (2005)

  • Basseur, M., Burke, E.K.: Indicator-based multiobjective local search. In: IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, September 2007, pp. 3100–3107 (2007)

    Chapter  Google Scholar 

  • Basseur, M., Seynhaeve, F., Talbi, E.-G.: Design of multi-objective evolutionary algorithms: application to the flow-shop scheduling problem. In: IEEE Congress on Evolutionary Computation (CEC), 2002, Honolulu, USA, vol. 2, pp. 1151–1156 (2002)

    Google Scholar 

  • Basseur, M., Zitzler, E.: Handling uncertainty in indicator-based multiobjective optimization. Int. J. Comput. Intell. Res. 2(3), 255–272 (2006)

    MathSciNet  Google Scholar 

  • Bentley, P.J., Wakefield, J.P.: Finding acceptable solutions in the Pareto-optimal range using multiobjective genetic algorithms. Soft Comput. Eng. Des. Manuf. 5, 231–340 (1997)

    Google Scholar 

  • Bringmann, K., Friedrich, T.: Approximating the least hypervolume contributor: NP-hard in general, but fast in practice. In: 5th International Conference on Evolutionary Multi-Criterion Optimization (EMO 2009). Lecture Notes in Computer Science, vol. 5467, pp. 6–20. Springer, Berlin (2009)

    Chapter  Google Scholar 

  • Burke, E., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H.: The state of the art of nurse rostering. J. Sched. 7(6), 441–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Cahon, S., Melab, N., Talbi, E.-G.: ParadisEO: a framework for the reusable design of parallel and distributed metaheuristics. J. Heuristics 10(3), 357–380 (2004)

    Article  Google Scholar 

  • Cheang, B., Li, H., Lim, A., Rodrigues, B.: Nurse rostering problems—a bibliographic survey. Eur. J. Oper. Res. 151, 447–460 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Deb, K.: Multi-objective optimization. In: Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, Chap. 10, pp. 273–316. Springer, Berlin (2006)

    Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 181–197 (2002)

    Article  Google Scholar 

  • Du, J., Leung, J.Y.-T.: Minimizing total tardiness on one machine is NP-hard. Math. Oper. Res. 15, 483–495 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Ehrgott, M., Gandibleux, X.: Approximative solution methods for multiobjective combinatorial optimization. Trab. Investig. Oper. 12(1), 1–63 (2004)

    MathSciNet  MATH  Google Scholar 

  • Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: 3rd International Conference on Evolutionary Multi-criterion Optimization (EMO 2005). Lecture Note in Computer Science, vol. 3410, pp. 62–76. Springer, Berlin (2005)

    Chapter  Google Scholar 

  • Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation discussion and generalization. In: Fifth International Conference on Genetic Algorithms (ICGA’93), San Mateo, USA, pp. 416–423 (1993)

    Google Scholar 

  • Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  • Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O.: Inferential performance assessment of stochastic optimisers and the attainment function. In: 1st International Conference on Evolutionary Multi-criterion Optimization (EMO 2001). Lecture Note in Computer Science, vol. 1993, pp. 213–225. Springer, Berlin (2001)

    Chapter  Google Scholar 

  • Ishibuchi, T.H.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 28(3), 1998 (1998)

    Article  Google Scholar 

  • Hansen, M.P.: Tabu search for multiobjective optimization: MOTS. In: MCDM’97 Conference, Cap town, South Africa (1997)

    Google Scholar 

  • Kim, Y.-D.: Minimizing total tardiness in permutation flowshops. Eur. J. Oper. Res. 33, 541–551 (1995)

    Article  Google Scholar 

  • Knowles, J.D.: Local-search and hybrid evolutionary algorithms for Pareto optimization. PhD thesis, University of Reading (2002)

  • Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  • Knowles, J.D., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastive multiobjective optimizers. Technical report TIK-Report No. 214, Computer Engineering and Networks Laboratory, ETH Zurich, July 2005

  • Labbé, M., Laporte, G., Rodríguez Martín, I., Salazar González, J.J.: The ring star problem: polyhedral analysis and exact algorithm. Networks 43, 177–189 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Landa-Silva, D., Burke, E.K., Petrovic, S.: An introduction to multiobjective metaheuristics for scheduling and timetabling. In: Metaheuristics for Multiobjective Optimisation, pp. 91–129, Chap. 4. Springer, Berlin (2004)

    Chapter  Google Scholar 

  • Landa-Silva, D., Le, K.N.: A simple evolutionary algorithm with self-adaptation for multi-objective nurse scheduling. In: Adaptive and Multilevel Metaheuristics, vol. 136, pp. 133–155, Chap. 7. Springer, Berlin (2008)

    Chapter  Google Scholar 

  • Lenstra, J.K., Kan, A.H.G.R., Brucker, P.: Complexity of machine scheduling problems. Ann. Discrete Math. 1, 343–362 (1977)

    Article  Google Scholar 

  • Liefooghe, A., Jourdan, L., Jozefowiez, N., Talbi, E.-G.: On the integration of a TSP heuristic into an EA for the bi-objective ring star problem. In: International Workshop on Hybrid Metaheuristics (HM 2008), Malaga, Spain. Lecture Notes in Computer Science, vol. 5296, pp. 117–130. Springer, Berlin (2008)

    Chapter  Google Scholar 

  • Liefooghe, A., Mesmoudi, S., Humeau, J., Jourdan, L., Talbi, E.-G.: A study on dominance-based local search approaches for multiobjective combinatorial optimization. In: Second International Workshop on Engineering Stochastic Local Search Algorithms (SLS 2009), Brussels, Belgium. Lecture Notes in Computer Science, vol. 5752, pp. 120–124 (2009)

    Google Scholar 

  • Murata, T., Nozawa, H., Ishibuchi, H., Gen, M.: Modification of local search directions for non-dominated solutions in cellular multiobjective genetic algorithms for pattern classification problems. In: 2nd International Conference on Evolutionary Multi-criterion Optimization (EMO 2003). Lecture Notes in Computer Science, vol. 2632, pp. 593–607. Springer, Berlin (2003)

    Chapter  Google Scholar 

  • Nagar, A., Haddock, J., Heragu, S.: Multiple and bicriteria scheduling: a literature survey. Eur. J. Oper. Res. 81, 88–104 (1995)

    Article  MATH  Google Scholar 

  • Oliver, I.M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover operators on the traveling salesman problem. In: Proceedings of the Second International Conference on Genetic algorithms and their application, Mahwah, NJ, USA, pp. 224–230. Erlbaum, Hillsdate (1987)

    Google Scholar 

  • Paquete, L., Stützle, T.: A study of local search algorithms for the biobjective QAP with correlated flow matrices. Eur. J. Oper. Res. 169(3), 943–959 (2006)

    Article  MATH  Google Scholar 

  • Ross, P.: Hyper-heuristics. In: Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pp. 527—556, Chap. 17. Springer, Berlin (2006)

    Google Scholar 

  • Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  • Taillard, E.: Benchmarks for basic scheduling problems. Cent. Eur. J. Oper. Res. 64, 278–285 (1993)

    MATH  Google Scholar 

  • Talbi, E.G., Rahoual, M., Mabed, M.H., Dhaenens, C.: A hybrid evolutionary approach for multicriteria optimization problems: application to the flow shop. In: 1st International Conference on Evolutionary Multi-Criterion Optimization (EMO 2001). Lecture Notes in Computer Science, vol. 1993, pp. 416–428 (2001)

    Chapter  Google Scholar 

  • Tan, K.C., Lee, T.H., Khor, E.F.: Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. Evol. Comput. 5(6), 565–588 (2001)

    Article  Google Scholar 

  • Viana, A., Pinho de Sousa, J., Matos, M.A.: Multiobjective constraint oriented neighbourhoods. In: 6th Metaheuristics International Conference (MIC 2005), Vienna, Austria, pp. 896–903 (2005)

    Google Scholar 

  • Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII), Birmingham, UK, pp. 832–842 (2004)

    Chapter  Google Scholar 

  • Zitzler, E., Laumanns, M., Bleuler, S.: A tutorial on evolutionary multiobjective optimization. In: Gandibleux, X., et al. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, pp. 3–37. Springer, Berlin (2004)

    Chapter  Google Scholar 

  • Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K. et al. (eds.) Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), pp. 95–100. International Center for Numerical Methods in Engineering (CIMNE), Barcelona (2002)

    Google Scholar 

  • Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. Evol. Comput. 3, 257–271 (1999)

    Article  Google Scholar 

  • Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Basseur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basseur, M., Liefooghe, A., Le, K. et al. The efficiency of indicator-based local search for multi-objective combinatorial optimisation problems. J Heuristics 18, 263–296 (2012). https://doi.org/10.1007/s10732-011-9178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-011-9178-y

Keywords

Navigation