Simple and fast surrogate constraint heuristics for the maximum independent set problem


In a recent paper Glover (J. Heuristics 9:175–227, 2003) discussed a variety of surrogate constraint-based heuristics for solving optimization problems in graphs. The key ideas put forth in the paper were illustrated by giving specializations designed for certain covering and coloring problems. In particular, a family of methods designed for the maximum cardinality independent set problem was presented. In this paper we report on the efficiency and effectiveness of these methods based on considerable computational testing carried out on test problems from the literature as well as some new test problems.

This is a preview of subscription content, log in to check access.


  1. Busygin, S., Butenko, S., Pardalos, P.M.: A heuristic for the maximum independent set problem. J. Comb. Optim. 6, 287–297 (2002)

    MATH  Article  MathSciNet  Google Scholar 

  2. Butenko, S., Trukhanov, S.: Using critical set for the maximum independent set problem. Working paper, Texas A&M University (2006)

  3. Feo, T., Resende, A., Mauricio, G.C., Smith, S.H.: A greedy randomized adaptive search procedure for maximum independent set. Oper. Res. 42(5), 860–878 (1994)

    MATH  Article  Google Scholar 

  4. Fréville, A., Plateau, G.: An exact search for the solution of the surrogate dual of the 0–1 bidimensional knapsack problem. Eur. J. Oper. Res. 68, 413–421 (1993)

    MATH  Article  Google Scholar 

  5. Glover, F.: Surrogate constraint duality in mathematical programming. Oper. Res. 23(3), 434–451 (1975)

    MATH  Article  MathSciNet  Google Scholar 

  6. Glover, F.: Tutorial on surrogate constraint approaches for optimization in graphs. J. Heuristics 9, 175–227 (2003)

    MATH  Article  Google Scholar 

  7. Glover, F., Kochenberger, G.: Critical event tabu search for multidimensional knapsack problems. In: Osman, J.H., Kelly, J.P. (eds.) Meta-Heuristics: Theory & Applications, pp. 407–427. Kluwer Academic, Dordrecht (1996)

    Google Scholar 

  8. Greenberg, H.J., Pierskalla, W.P.: Surrogate mathematical programs. Oper. Res. 18, 924–939 (1970)

    MATH  Article  MathSciNet  Google Scholar 

  9. Greenberg, H.J., Pierskalla, W.P.: Quasi-conjugate functions and surrogate duality. Cah. Cent. Etudes Rech. Oper. 15, 437–448 (1973)

    MATH  MathSciNet  Google Scholar 

  10. Kochenberger, G.A., McCarl, B.A., Wyman, F.P.: A heuristic for general integer programming. Decis. Sci. 5(1), 36 (1974)

    Article  Google Scholar 

  11. Lokketangen, A., Glover, F.: Surrogate constraint analysis—new heuristics and learning schemes for satisfiability problems. DIMACS Ser. Discrete Math. Theor. Comput. Sci. 35, 537–572 (1997)

    MathSciNet  Google Scholar 

  12. Osorio, M., Glover, F., Hammer, P.: Cutting and surrogate constraint analysis for improved multidimensional knapsack solutions. Ann. Oper. Res. 117, 71–93 (2002)

    MATH  Article  MathSciNet  Google Scholar 

  13. Pardalos, P., Rodgers, G.: Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45, 131–144 (1990)

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Gary Kochenberger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alidaee, B., Kochenberger, G. & Wang, H. Simple and fast surrogate constraint heuristics for the maximum independent set problem. J Heuristics 14, 571–585 (2008).

Download citation


  • Maximum independent set
  • Surrogate constraints
  • Heuristics