Skip to main content
Log in

Dynamics of Local Search Trajectory in Traveling Salesman Problem

  • Regular Papers
  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

This paper investigates dynamics of a local search trajectory generated by running the Or-opt heuristic on the traveling salesman problem. This study evaluates the dynamics of the local search heuristic by estimating the correlation dimension for the search trajectory, and finds that the local heuristic search process exhibits the transition from high-dimensional stochastic to low-dimensional chaotic behavior. The detection of dynamical complexity for a heuristic search process has both practical as well as theoretical relevance. The revealed dynamics may cast new light on design and analysis of heuristics and result in the potential for improved search process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abarbanel, H., D.I., R. Brow, J.J. Sidorowich, and L. Sh. Tsimring. (1993). “The Analysis of Observed Chaotic Data in Physical Systems.” Reviews of Modern Physics 65(2), 1331–1392.

    Article  Google Scholar 

  • Alligood, K.T., T.D. Sauer, and J.A. Yorke. (1997). Chaos: An Introduction to Dynamical System. New York: Springer-Verlag.

    Google Scholar 

  • Boese, K.D., A.B. Kahng, and S. Muddu. (1994). “A New Adaptive Multistart Technique for Combinatorial Global Optimizations.” Operations Research Letters 16(2), 101–113.

    Article  Google Scholar 

  • Bonomi, E. and J.L. Lutton. (1984). “The N-city Traveling Salesman Problem: Statistical Mechanics and the Metropolis Algorithm.” SIAM Review 26, 551–568.

    Article  Google Scholar 

  • Brock, W. (1986). “Distinguishing Random and Deterministic Systems: Abridged Version.” Journal of Economic Theory 40(1), 168–195.

    Article  Google Scholar 

  • Burke, E.K., G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg. (2003). “Hyper-Heuristics: An Emerging Direction in Modern Search Technology.” In Glover, F.W. and G.A. Kochenberger (eds.), Handbook of Metaheuristics, Kluwer Academic Publishers, pp. 457–474.

  • Burke, E.K., G. Kendall, and E. Soubeiga. (2003). “A Tabu-Search Hyperheuristic for Timetabling and Rostering.” Journal of Heuristics 9(6), 451–470.

    Article  Google Scholar 

  • Buzug, T., T. Reimers, and G. Pfister. (1990). “Optimal Reconstruction of Strange Attractors from Purely Geometrical Arguments.” Europhysics Letters 13(7), 605–610.

    Google Scholar 

  • Casdagli, M., T. Sauer, and J.A. Yorke. (1991). “Embedology.” Journal of Statistical Physics 65(3/4), 579–616.

  • Cowling, P.I., G. Kendall, and E. Soubeig. (2001). “A Parameter-Free Hyperheuristic for Scheduling a Sales Summit.” Proceedings of the Third Metaheuristic International Conference (MIC2001), 127–131.

  • Ding, M., C. Grebogi, E. Ott, T. Sauer, and J.A. Yorke. (1993). “Plateau Onset for Correlation Dimension: When Does It Occur?” Physical Review Letter 70(25), 3972–3975.

    Google Scholar 

  • Evans, J.R. (1987). “Structural Analysis of Local Search Heuristics in Combinatorial Optimization.” Computer and Operations Research 14(3), 465–477.

    Article  Google Scholar 

  • Fontana, W., P.F. Stadler, E.G. Bornberg-Bauer, T. Griesmacher, I.L. Hofacker, M. Tacker, P. Tarazona, E.D. Weinberger, and P. Schuster. (1993). “RNA Folding and Combinatory Landscapes.” Physical Review E 47(3), 2083–2099.

    Article  Google Scholar 

  • Frazer, A.M. and H.L. Swinney. (1986). “Independent Coordinates for Strange Attractors from Mutual Information.” Physical Review A 33(2), 1134–1140.

    Article  PubMed  Google Scholar 

  • Garey, M.R. and D.S. Johnson. (1979). Computers and Intractability. New York: Freeman.

    Google Scholar 

  • Gaw, A., P. Rattadilok, and K. Kwan. (2004). “Distributed Choice Function Hyper-Heuristics for Timetabling and Scheduling.” In Proceedings of the 2004 International Conference on the Practice and Theory of Automated Timetabling (PATAT 2004), pp. 495–497.

  • Grassberger, P. and I. Procaccia. (1983). “Characterization of Strange Attractor.” Physical Review Letters 50(5), 346–349.

    Article  Google Scholar 

  • Grover, L.K. (1992). “Local Search and the Local Structure of NP-Complete Problem.” Operations Research Letters 12(4), 235–243.

    Article  Google Scholar 

  • Hilborn, R.C. (1994). Chaos and Nonlinear Dynamics: An Introduction for Science and Engineers. New York: Oxford University Press.

    Google Scholar 

  • Holzfuss, J. and G. Mayer-Kress. (1986). “An Approach to Error-Estimation in the Application of Dimension Algorithm.” In G. Mayer-Kress (ed.), Dimensions and Entropies in Chaotic Systems: Quantification of Complex Behavior. Berlin: Springer-Verlag, pp. 114–122.

  • Johnson, D.S. (1990). “Local Optimization and the Traveling Salesman Problem.” Proceedings of the 17th Colloquium on Automate Languages and Programming, Lecture Notes in Computer Science 443, Berlin: Springer, 446–461.

  • Jones, T. and S. Forrest. (1995). “Fitness Distance Correlation as a Measure of Problem Difficulty for Generic Algorithms.” In Proceedings of the Sixth International Conference on Genetic Algorithms, Morgan Kaufmann, 184–192.

  • Kauffman, S.A. (1993). The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press.

  • Kauffman, S.A. and S. Levin. (1987). “Towards a General Theory of Adaptive Walks on Rugged Landscapes.” Journal of Theoretical Biology 128, 11–45.

    PubMed  Google Scholar 

  • Kennel, M.B., R. Brown, and H.D.I. Abarbanel. (1992). “Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction.” Physical Review A 45(6), 3403–3411.

    Article  PubMed  Google Scholar 

  • Kuramoto, Y. (1984). Chaos and Statistical Methods. New York: Springer-Verlag.

  • Li. W. (1998). “Dynamics of Heuristic Search System for Combinatorial Optimization Problems: the Traveling Salesman Problem Case.” Ph. D. Dissertation, University of Mississippi, Oxford MS.

  • Lin, S. (1965). “Computer Solutions of the Traveling Salesman Problem,” The Bell System Technical Journal 44, 2245–2269.

    Google Scholar 

  • Lin, S. and B.W. Kernighan. (1973). “An Effective Heuristic Algorithm for the Traveling Salesman Problem.” Operations Research 21, 498–516.

    Google Scholar 

  • Macken, C.A., P.S. Hagan, and A.S. Perelson. (1991). “Evolutionary Walks of Rugged Landscapes.” SIAM Journal on Applied Mathematics 51(3), 799–827.

    Article  Google Scholar 

  • Merz, P. and B. Freisleben. (1999). “Fitness Landscapes and Memetic Algorithm Design.” In D. Corne, M. Dorigo and F. Glover (eds.) New Ideas in Optimization. London: McGraw-Hill, pp. 245–260.

  • Or. I. (1976). “Traveling Salesman-Type Combinatorial Problems and Their Relation to the Logistics of Regional Blood Banking.” Ph. D. Thesis, Northwestern University, Evanstonm IL.

  • Ott, E., T. Sauer, and J. A. Yorke (eds.), (1994). Coping with Chaos: Analysis of Chaotic Data and the Exploitation of Chaotic Systems. New York: John Wiley & Sons.

  • Packard, N., J.P. Crutchfield, J.D. Farmer, and R.S. Shaw. (1980). “Geometry from a Time Series.” Physical Review Letters 45(9), 712–716.

    Article  Google Scholar 

  • Papadimitriou, C.H. (1994). Computational Complexity. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Papadimitriou, C.H. and K. Steigliz. (1999). Combinatorial Optimization: Algorithms and Complexity. Dover Publications.

  • Parker, T.S., and L.O. Chua. (1990). Practical Numerical Algorithms for Chaotic Systems. New York: Springer-Verlag.

    Google Scholar 

  • Ramsey, J.B. and H.J. Yuan. (1987). “The Statistical Properties of Dimension Calculations Using Small Data Sets.” Research Report #87-20, C. V. Starr Center, New York University.

  • Reeves, C.R. (1993). Modern Heuristic Techniques for Combinatorial Problem. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Reidys, C.M. and P.F. Stadler. (2002). “Combinatorial Landscapes.” SIAM Review 44, 3–54.

    Article  Google Scholar 

  • Shaw, R.S. (1985). The Dripping Faucet as a Model Chaotic System. Santa Cruz, CA: Aerial.

    Google Scholar 

  • Sorkin, G.B. (1991). “Efficient Simulated Annealing on Fractal Energy Landscapes.” Algorithmica 6, 367–418.

    Article  Google Scholar 

  • Takens, F. (1981). “Detecting Strange Attractors in Turbulence.” In D. Rand and L. S. Young (eds.), Dynamical Systems and Turbulence, Warwich 1980, Lecture Notes in Mathematics, 898. New York: Springer-Verlag, pp. 366-382.

  • Taken, F. (1985). “On the Numerical Determination of the Dimension of an Attractor.” In N. Breaksma, H. Broer, and F. Takens (eds.), Dynamical Systems and Bifurcations. Berlin: Springer-Verlag, pp. 99–106.

  • Tong, H. and K.S. Lim. (1980). “Threshold, Autoregression, Limit Cycles and Cyclical Data.” Journal of the Royal Statistical Society 42(3), 245–292.

    Google Scholar 

  • Weinberger, E.D. (1990). “Correlated and Uncorrelated Fitness Landscapes and How to Tell the Difference.” Biological Cybernetics 63, 325–336.

    Article  Google Scholar 

  • Weinberger, E.D. (1991). “Local Properties of Kauggman's N-k Model: A Tunably Rugged Energy Landscape.” Physical Review A 44(10), 6399–6413.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W. Dynamics of Local Search Trajectory in Traveling Salesman Problem. J Heuristics 11, 507–524 (2005). https://doi.org/10.1007/s10732-005-3604-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-005-3604-y

Keywords

Navigation