Skip to main content

Diabetes and the hospitalized patient

A cluster analytic framework for characterizing the role of sex, race and comorbidity from 2006 to 2011

Abstract

In the US, one in four adults has two or more chronic conditions; this population accounts for two thirds of healthcare spending. Comorbidity, the presence of multiple simultaneous health conditions in an individual, is increasing in prevalence and has been shown to impact patient outcomes negatively. Comorbidities associated with diabetes are correlated with increased incidence of preventable hospitalizations, longer lengths of stay (LOS), and higher costs. This study focuses on sex and race disparities in outcomes for hospitalized adult patients with and without diabetes. The objective is to characterize the impact of comorbidity burden, measured as the Charlson Weighted Index of Comorbidities (WIC), on outcomes including LOS, total charges, and disposition (specifically, probability of routine discharge home). Data from the National Inpatient Sample (2006–2011) were used to build a cluster-analytic framework which integrates cluster analysis with multivariate and logistic regression methods, for several goals: (i) to evaluate impact of these covariates on outcomes; (ii) to identify the most important comorbidities in the hospitalized population; and (iii) to create a simplified WIC score. Results showed that, although hospitalized women had better outcomes than men, the impact of diabetes was worse for women. Also, non-White patients had longer lengths of stay and higher total charges. Furthermore, the simplified WIC performed equivalently in the generalized linear models predicting standardized total charges and LOS, suggesting that this new score can sufficiently capture the important variability in the data. Our findings underscore the need to evaluate the differential impact of diabetes on physiology and treatment in women and in minorities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    Version 6.1 of the SAS system for Windows, copyright Ⓒ 2013 SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc., Cary, NC, USA.

References

  1. 1.

    Agency for Healthcare Research and Quality (2011) HCUP Nationwide Inpatient Sample (NIS). www.hcup-us.ahrq.gov/nisoverview.jsp

  2. 2.

    Ahern MM, Hendryx M (2007) Avoidable hospitalizations for diabetes comorbidity risks. Dis Manag 12. http://online.liebertpub.com/doi/abs/10.1089/dis.2007.106709

  3. 3.

    Ahern T, Lash T, Thwin S, Silliman R (2009) Impact of acquired comorbidities on all-cause mortality rates among older breast cancer survivors. Med Care. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933563/

  4. 4.

    Ai C, Norton EC (2003) Interaction terms in logit and probit models. Econ Lett. ISSN 01651765. doi:10.1016/S0165-1765(03)00032-6

    Article  Google Scholar 

  5. 5.

    Austin SR, Wong Y-N, Uzzo RG, Beck JR, Egleston BL (2015) Why summary comorbidity measures such as the Charlson comorbidity index and Elixhauser score work. Med Care 53(9):e65–e72, 9. ISSN 0025-7079. doi:10.1097/MLR.0b013e318297429c. http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00005650-201509000-00014

    Article  Google Scholar 

  6. 6.

    Blashfield RK (1980) Propositions regarding the use of cluster analysis in clinical research. J Consult Clin Psychol 48(4):456–459. ISSN 0022-006X. doi:10.1037/0022-006X.48.4.456. http://content.apa.org/journals/ccp/48/4/456

    Article  Google Scholar 

  7. 7.

    Boorjian SA, Kim SP, Tollefson MK, Carrasco A, Cheville JC, Thompson RH, Thapa P, Frank I (2013) Comparative performance of comorbidity indices for estimating perioperative and 5-year all cause mortality following radical cystectomy for bladder cancer. J Urol 190(1):55–60, 7. ISSN 1527-3792. doi:10.1016/j.juro.2013.01.010. http://www.ncbi.nlm.nih.gov/pubmed/23313198

    Article  Google Scholar 

  8. 8.

    Brailsford SC, Davies R, Canning C, Roderick PJ (1998) Evaluating screening policies for the early detection of retinopathy in patients with non-insulin dependent diabetes. Health Care Manag Sci 1(2):115–124. ISSN 13869620. doi:10.1023/A:1019086300747

    Article  Google Scholar 

  9. 9.

    Buis ML (2010) Stata tip 87: interpretation of interactions in non-linear models. Stata J 10(2):305–308. http://www.maartenbuis.nl/publications/interactions.pdf

    Google Scholar 

  10. 10.

    Caughey G, Roughead E, Roughead EE (2011) Multimorbidity research challenges: where to go from here?. J Comorbidity 1(1):8–10. ISSN 2235042X. doi:10.15256/joc.2011.1.9. http://www.jcomorbidity.com/index.php/test/article/view/9

    Article  Google Scholar 

  11. 11.

    Centers for Disease Control and Prevention (2015) Crude and age-adjusted rates of diagnosed diabetes per 100 civilian, Non- Institutionalized adult population, United States 1980–2014. http://www.cdc.gov/diabetes/statistics/prev/national/figageadult.htm

  12. 12.

    Charlson M, Szatrowski TP, Peterson J, Gold J (1994) Validation of a combined comorbidity index. J Clin Epidemiol 47(11):1245– 51, 11. ISSN 0895-4356. http://www.ncbi.nlm.nih.gov/pubmed/7722560

    Article  Google Scholar 

  13. 13.

    Charlson ME, Pompei P, Ales KL, MacKenzie C (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40(5):373–383, 1. ISSN 00219681. doi:10.1016/0021-9681(87)90171-8

    Article  Google Scholar 

  14. 14.

    Chou AF, Brown AF, Jensen RE, Shih S, Pawlson G, Scholle SH (2007) Gender and racial disparities in the management of diabetes mellitus among medicare patients. Women’s Health Issues 17(3):150–161. ISSN 10493867. doi:10.1016/j.whi.2007.03.003

    Article  Google Scholar 

  15. 15.

    Denton BT, Kurt M, Shah ND, Bryant SC, Smith SA (2009) Optimizing the start time of statin therapy for patients with diabetes. doi:10.1177/0272989X08329462

    Article  Google Scholar 

  16. 16.

    Elixhauser A, Steiner C, Harris DR, Coffey RM (1998) Comorbidity measures for use with administrative data. Med care 36(1):8–27, 1. ISSN 0025-7079. http://www.ncbi.nlm.nih.gov/pubmed/9431328

    Article  Google Scholar 

  17. 17.

    Gerteis J, Izrael D, Deitz D, LeRoy L, Ricciardi R, Miller T, Basu J (2014) Multiple chronic conditions chartbook. Technical report, AHRQ Publications No. q14-0038, Rockville, MD. https://www.ahrq.gov/sites/default/files/wysiwyg/professionals/prevention-chronic-care/decision/mcc/mccchartbook.pdf

  18. 18.

    Giovannetti ER, Wolff JL, Xue Q-L, Weiss CO, Leff B, Boult C, Hughes T, Boyd CM (2012) Difficulty assisting with health care tasks among caregivers of multimorbid older adults. J Gen Intern Med 27(1):37–44, 1. ISSN 1525-1497. doi:10.1007/s11606-011-1831-5. http://www.ncbi.nlm.nih.gov/pubmed/21874385, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3250537

    Article  Google Scholar 

  19. 19.

    Greene W (2010) Testing hypotheses about interaction terms in nonlinear models. Econ Lett 107 (2):291–296. http://econpapers.repec.org/article/eeeecolet/v_3a107_3ay_3a2010_3ai_3a2_3ap_3a291-296.htm

    Article  Google Scholar 

  20. 20.

    Gruneir A, Forrester J, Camacho X, Gill SS, Bronskill SE (2013) Gender differences in home care clients and admission to long-term care in Ontario, Canada: a population-based retrospective cohort study. BMC Geriatr 13:48, 5. ISSN 1471-2318. doi:10.1186/1471-2318-13-48. http://www.ncbi.nlm.nih.gov/pubmed/23678949, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3679828

    Article  Google Scholar 

  21. 21.

    Heisler M, Smith D, Hayward R, Krein S (2003) Racial disparities in diabetes care processes, outcomes, and treatment intensity. Med care. http://journals.lww.com/lww-medicalcare/Abstract/2003/11000/Racial_Disparities_in_Diabetes_Care_Processes,.2.aspx

  22. 22.

    Hodgson TA, Cohen AJ (1999) Medical care expenditures for diabetes, its chronic complications, and its comorbidities. Prev Med 29(3):173–186, 9. ISSN 00917435. doi:10.1006/pmed.1999.0534. http://www.sciencedirect.com/science/article/pii/S0091743599905340

    Article  Google Scholar 

  23. 23.

    Holden L, Scuffham PA, Hilton MF, Muspratt A, Ng S-K, Whiteford HA (2011) Patterns of multimorbidity in working Australians. Popul Health Metrics 9 (1):15, 12. ISSN 1478-7954. doi:10.1186/1478-7954-9-15

    Article  Google Scholar 

  24. 24.

    Jiang HJ, Stryer D, Friedman B, Andrews R (2003) Multiple hospitalizations for patients with diabetes. Diabetes Care 26(5):1421–6, 5. ISSN 0149-5992. http://www.ncbi.nlm.nih.gov/pubmed/12716799

    Article  Google Scholar 

  25. 25.

    Kalyani RR, Lazo M, Ouyang P, Turkbey E, Chevalier K, Brancati F, Becker D, Vaidya D (2014) Sex differences in diabetes and risk of incident coronary artery disease in healthy young and middle-aged adults. Diabetes Care 37(3):830–8. ISSN 1935-5548. doi:10.2337/dc13-1755. http://www.ncbi.nlm.nih.gov/pubmed/24178997, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3931379

    Article  Google Scholar 

  26. 26.

    Karaca-Mandic P, Norton EC, Dowd B (2012) Interaction terms in nonlinear models. Health Serv Res 47(1 Pt 1):255–74, 2. ISSN 1475-6773. doi:10.1111/j.1475-6773.2011.01314.x. http://www.ncbi.nlm.nih.gov/pubmed/22091735, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3447245

    Article  Google Scholar 

  27. 27.

    Kautzky-Willer A, Harreiter J, Pacini G (2016) Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev 37(3):278–316, 6. ISSN 1945-7189. doi:10.1210/er.2015-1137. http://www.ncbi.nlm.nih.gov/pubmed/27159875, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4890267

    Article  Google Scholar 

  28. 28.

    Kerr EA, Heisler M, Krein SL, Kabeto M, Langa KM, Weir D, Piette JD (2007) Beyond comorbidity counts: how do comorbidity type and severity influence diabetes patients’ treatment priorities and self-management?. J Gen Intern Med 22 (12):1635–40, 12. ISSN 1525-1497. doi:10.1007/s11606-007-0313-2. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2219819&tool=pmcentrez&rendertype=abstract

    Article  Google Scholar 

  29. 29.

    Lee JM, Okumura MJ, Freed GL, Menon RK, Davis MM (2007) Trends in hospitalizations for diabetes among children and young adults: United States, 1993–2004. Diabetes Care 30(12):3035–9, 12. ISSN 1935-5548. doi:10.2337/dc07-0769. http://care.diabetesjournals.org/content/30/12/3035.short

    Article  Google Scholar 

  30. 30.

    Lee JM, Davis MM, Gebremariam A, Kim C (2010) Age and sex differences in hospitalizations associated with diabetes. J Womens Health (Larchmt) 19(11):2033–42, 11. ISSN 1931-843X. doi:10.1089/jwh.2010.2029

    Article  Google Scholar 

  31. 31.

    Lee TA, Shields AE, Vogeli C, Gibson TB, Woong-Sohn M, Marder WD, Blumenthal D, Weiss KB (2007b) Mortality rate in veterans with multiple chronic conditions. J Gen Intern Med 22 (Suppl 3):403–7, 12. ISSN 1525-1497. doi:10.1007/s11606-007-0277-2. http://www.ncbi.nlm.nih.gov/pubmed/18026809, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2219704

    Article  Google Scholar 

  32. 32.

    Leung M-YM, Pollack LM, Colditz GA, Chang S-H (2015) Life years lost and lifetime health care expenditures associated with diabetes in the U.S., National Health Interview Survey, 1997–2000. Diabetes Care 38(3):460–468, 3. ISSN 0149-5992. doi:10.2337/dc14-1453. http://www.ncbi.nlm.nih.gov/pubmed/25552420, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4338508

    Article  Google Scholar 

  33. 33.

    Lochner KA, Cox CS (2013) Prevalence of multiple chronic conditions among medicare beneficiaries, United States, 2010. Prev Chronic Dis 10:120137, 4. ISSN 1545-1151. doi:10.5888/pcd10.120137. http://www.cdc.gov/pcd/issues/2013/12_0137.htm

    Article  Google Scholar 

  34. 34.

    Lumley T, Diehr P, Emerson S, Chen L (2002) The importance of the normality assumption in large public health data sets. Annu Rev Public Health 23(1):151–169, 5. ISSN 0163-7525. doi:10.1146/annurev.publhealth.23.100901.140546. http://www.annualreviews.org/doi/10.1146/annurev.publhealth.23.100901.140546

    Article  Google Scholar 

  35. 35.

    Maddigan SL, Feeny DH, Johnson JA (2005) Health-related quality of life deficits associated with diabetes and comorbidities in a Canadian National Population Health Survey. Qual Life Res 14(5):1311–1320, 6. ISSN 0962-9343. doi:10.1007/s11136-004-6640-4

    Article  Google Scholar 

  36. 36.

    Maimon O., Rokach L. (eds) (2005) Data mining and knowledge discovery handbook. Springer-Verlag, New York. ISBN 0-387-24435-2. doi:10.1007/b107408

    Google Scholar 

  37. 37.

    Malehi A, Pourmotahari F, Angali K (2015) Statistical models for the analysis of skewed healthcare cost data: a simulation study. Heal Econ Rev. http://link.springer.com/article/10.1186/s13561-015-0045-7

  38. 38.

    Mason J, Denton B, Shah N, Smith S (2014) Optimizing the simultaneous management of blood pressure and cholesterol for type 2 diabetes patients. Eur J Oper Res 233(3):727–738. ISSN 03772217. doi:10.1016/j.ejor.2013.09.018. http://www.sciencedirect.com/science/article/pii/S037722171300773X;

    Article  Google Scholar 

  39. 39.

    Mazze RS, Strock ES, Bergenstal RM, Criego A, Cuddihy R, Langer O, Simonson GD, Powers MA (2011) Staged diabetes management, vol 12. Wiley, Oxford. ISBN 9781119950424. doi:10.1002/9781119950424

    Book  Google Scholar 

  40. 40.

    Menendez ME, Neuhaus V, van Dijk CN, Ring D (2014) The Elixhauser comorbidity method outperforms the Charlson index in predicting inpatient death after orthopaedic surgery. Clin Orthop Relat Res 472(9):2878–86, 9. ISSN 1528-1132. doi:10.1007/s11999-014-3686-7. http://www.ncbi.nlm.nih.gov/pubmed/24867450

    Article  Google Scholar 

  41. 41.

    Moro-Sibilot D, Aubert A, Diab S, Lantuejoul S, Fourneret P, Brambilla E, Brambilla C, Brichon PY (2005) Comorbidities and Charlson score in resected stage I nonsmall cell lung cancer. Eur Respir J 26(3). http://erj.ersjournals.com/content/26/3/480.short

    Article  Google Scholar 

  42. 42.

    Myers R, Montgomery D, Vining G, Robinson T (2012) Generalized linear models: with applications in engineering and the sciences, 2nd edn. Wiley, New York. http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470454636.html

    Google Scholar 

  43. 43.

    Narayan KMV, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF (2003) Lifetime risk for diabetes mellitus in the United States. JAMA 290(14):1884–1890. ISSN 1538-3598. doi:10.1001/jama.290.14.1884

    Article  Google Scholar 

  44. 44.

    Niefeld MR, Braunstein JB, Wu AW, Saudek CD, Weller WE, Anderson GF (2003) Preventable hospitalization among elderly medicare beneficiaries with type 2 diabetes. Diabetes Care 26(5):1344–1349, 5. ISSN 0149-5992. doi:10.2337/diacare.26.5.1344. http://care.diabetesjournals.org/content/26/5/1344.full

    Article  Google Scholar 

  45. 45.

    Nunes BP, Flores TR, Mielke GI, Thumé E., Facchini LA (2016) Multimorbidity and mortality in older adults: a systematic review and meta-analysis. Arch Gerontol Geriatr 67:130–138. ISSN 01674943. doi:10.1016/j.archger.2016.07.008

    Article  Google Scholar 

  46. 46.

    O’Malley KJ, Cook KF, Price MD, Wildes KR, Hurdle JF, Ashton CM (2005) Measuring diagnoses: ICD code accuracy. Health Serv Res 40(5p2):1620–1639, 10. ISSN 0017-9124. doi:10.1111/j.1475-6773.2005.00444.x

    Article  Google Scholar 

  47. 47.

    Ostling S, Wyckoff J, Ciarkowski SL, Pai C-W, Choe HM, Bahl V, Gianchandani R (2017) The relationship between diabetes mellitus and 30-day readmission rates. Clin Diabetes Endocrinol 3(1):3, 12. ISSN 2055-8260. doi:10.1186/s40842-016-0040-x

    Article  Google Scholar 

  48. 48.

    Payton FC (2009) Beyond the IT magic bullet: HIV prevention education and public policy. Journal of Health Disparities Research and Practice 3(2):13–33. http://www4.ncsu.edu/fcpayton/Research

    Google Scholar 

  49. 49.

    Prados-Torres A (2012) Multimorbidity patterns in primary care: interactions among chronic diseases using factor analysis. PloS One. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0032190

  50. 50.

    Quan H, Sundararajan V, Halfon P, Fong A (2005) Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Medical Care. http://www.jstor.org/stable/3768193

  51. 51.

    Rao CR (1948) The utilization of multiple measurements in problems of biological classification. J R Stat Soc Ser B Methodol 10(2):159–203. http://www.jstor.org/stable/2983775?seq=1#page_scan_tab_contents

    Google Scholar 

  52. 52.

    Renn BN, Feliciano L, Segal DL (2011) The bidirectional relationship of depression and diabetes: a systematic review. Clin Psychol Rev 31(8):1239–1246. ISSN 02727358. doi:10.1016/j.cpr.2011.08.001. http://www.sciencedirect.com/science/article/pii/S027273581100136X

    Article  Google Scholar 

  53. 53.

    Rossi MC, Cristofaro MR, Gentile S, Lucisano G, Manicardi V, Mulas MF, Napoli A, Nicolucci A, Pellegrini F, Suraci C, Giorda C (2013) Sex disparities in the quality of diabetes care: biological and cultural factors may play a different role for different outcomes: a cross-sectional observational study from the amd annals initiative. Diabetes Care 36(10):3162–3168, 10. ISSN 01495992. doi:10.2337/dc13-0184. http://www.ncbi.nlm.nih.gov/pubmed/23835692, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3781503

    Article  Google Scholar 

  54. 54.

    Sarafidis PA, McFarlane SI, Bakris GL (2006) Gender disparity in outcomes of care and management for diabetes and the metabolic syndrome. Curr Diab Rep 6(3):219–224, 5. ISSN 1534-4827. doi:10.1007/s11892-006-0038-3

    Article  Google Scholar 

  55. 55.

    SAS Institute Inc (2014) SAS/STAT ® 13.2 User’s Guide. SAS Institute Inc., Cary

    Google Scholar 

  56. 56.

    Schneider E, Zaslavsky A, Epstein A (2002) Racial disparities in the quality of care for enrollees in Medicare managed care. Jama. http://jama.jamanetwork.com/article.aspx?articleid=194724&resultclick=1

  57. 57.

    Sinnige J, Braspenning J (2013) The prevalence of disease clusters in older adults with multiple chronic diseases–a systematic literature review. PloS One. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079641

  58. 58.

    Spanakis EK, Golden SH (2013) Race/ethnic difference in diabetes and diabetic complications. Curr Diab Rep 13(6):814–23, 12. ISSN 1539-0829. doi:10.1007/s11892-013-0421-9. http://www.ncbi.nlm.nih.gov/pubmed/24037313, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3830901

    Article  Google Scholar 

  59. 59.

    (1996) U.S. government accountability office. Consumer price index: cost-of-living concepts and the housing and medical care components. Technical Report GGD-96-166. http://www.gao.gov/products/GGD-96-166

  60. 60.

    Vogeli C, Shields AE, Lee TA, Gibson TB, Marder WD, Weiss KB, Blumenthal D (2007) Multiple chronic conditions: prevalence, health consequences, and implications for quality, care management, and costs. J Gen Intern Med 22(S3):391–395, 12. ISSN 0884-8734. doi:10.1007/s11606-007-0322-1

    Article  Google Scholar 

  61. 61.

    Ward BW, Schiller JS, Goodman RA (2014) Multiple chronic conditions among US adults: a 2012 update. Prev Chronic Dis 11:E62, 1. ISSN 1545-1151. doi:10.5888/pcd11.130389. http://www.cdc.gov/pcd/issues/2014/13_0389.htm

    Google Scholar 

  62. 62.

    Wexler DJ, Grant RW, Meigs JB, Nathan DM, Cagliero E (2005) Sex disparities in treatment of cardiac risk factors in patients with type 2 diabetes. Diabetes Care 28(3):514–20, 3. ISSN 0149-5992. http://www.ncbi.nlm.nih.gov/pubmed/15735180

    Article  Google Scholar 

  63. 63.

    White H (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica: Journal of the Econometric Society. http://www.jstor.org/stable/1912934

  64. 64.

    Willi SM, Miller KM, DiMeglio LA, Klingensmith GJ, Simmons JH, Tamborlane WV, Nadeau KJ, Kittelsrud JM, Huckfeldt P, Beck RW, Lipman TH, T1D Exchange Clinic Network (2015) Racial-ethnic disparities in management and outcomes among children with type 1 diabetes. Pediatrics 135 (3):424–434, 3. ISSN 0031-4005. doi:10.1542/peds.2014-1774. http://www.ncbi.nlm.nih.gov/pubmed/25687140, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4533245

    Article  Google Scholar 

  65. 65.

    Wolff JL, Starfield B, Anderson G (2002) Prevalence, expenditures, and complications of multiple chronic conditions in the elderly. Arch Intern Med 162(20):2269–76, 11. ISSN 0003-9926. http://www.ncbi.nlm.nih.gov/pubmed/12418941

    Article  Google Scholar 

  66. 66.

    Yang W, Dall TM, Halder P, Gallo P, Kowal SL, Hogan PF, Petersen M (2013) Economic costs of diabetes in the U.S. in 2012. Diabetes Care 36(4):1033–1046

    Article  Google Scholar 

  67. 67.

    Zhang S, Ivy JS, Payton FC, Diehl KM (2009) Modeling the impact of comorbidity on breast cancer patient outcomes. Health Care Manag Sci 13(2):137–154, 11. ISSN 1386-9620. doi:10.1007/s10729-009-9119-6

    Article  Google Scholar 

  68. 68.

    Zhang S, Payton FC, Ivy JS (2013) Characterizing the impact of mental disorders on HIV patient length of stay and total charges. IIE Trans Healthc Syst Eng 3(3):139–146, 7. ISSN 1948-8300. doi:10.1080/19488300.2013.820238

    Article  Google Scholar 

  69. 69.

    Zhuo X, Zhang P, Barker L, Albright A, Thompson TJ, Gregg E (2014) The lifetime cost of diabetes and its implications for diabetes prevention. Diabetes Care 37(9):2557–2564, 9. ISSN 0149-5992. doi:10.2337/dc13-2484. http://www.ncbi.nlm.nih.gov/pubmed/25147254

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nisha Nataraj.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 366 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nataraj, N., Ivy, J.S., Payton, F.C. et al. Diabetes and the hospitalized patient. Health Care Manag Sci 21, 534–553 (2018). https://doi.org/10.1007/s10729-017-9408-4

Download citation

Keywords

  • Diabetes
  • Comorbidities
  • Patient outcomes
  • Cluster analysis
  • Generalized linear models