Skip to main content

Advertisement

Log in

Health systems: changes in hospital efficiency and profitability

  • Published:
Health Care Management Science Aims and scope Submit manuscript

Abstract

This study investigates potential changes in hospital performance after health system entry, while differentiating between hospital technical and cost efficiency and hospital profitability. In the first stage we obtained (bootstrapped) data envelopment analysis (DEA) efficiency scores. Then, genetic matching is used as a novel matching procedure in this context along with a difference-in-difference approach within a panel regression framework. With the genetic matching procedure, independent and health system hospitals are matched along a number of environmental and organizational characteristics. The results show that health system entry increases hospital technical and cost efficiency by between 0.6 and 3.4 % in four alternative post-entry periods, indicating that health system entry has not a transitory but rather a permanent effect on hospital efficiency. Regarding hospital profitability, the results reveal an increase in hospital profitability only 1 year after health system entry, and the estimations suggest that this effect is a transitional phenomenon. Overall, health system entry may serve as an appropriate management instrument for decision makers to increase hospital performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rosko MD, Proenca J, Zinn JS, Bazzoli GJ (2007) Hospital inefficiency: what is the impact of membership in different types of systems? Inquiry 44:335–349

    Google Scholar 

  2. Nauenberg E (1999) Network structure and hospital financial performance in New York State: 1991–1995. Med Care 56(4):415–439. doi:10.1177/107755879905600402

    Article  Google Scholar 

  3. Oliver C (1990) Determinants of interorganizational relationships: integration and future directions. Acad Manag Rev 15:241–265

    Google Scholar 

  4. Rosko MD, Proenca J (2005) Impact of network and system use on hospital X-inefficiency. Health Care Manag Rev 30:69–79

    Article  Google Scholar 

  5. Bazzoli GJ, Shortell SM, Dubbs N, Chan C, Kralovec P (1999) A taxonomy of health networks and systems: bringing order out of chaos. Health Serv Res 33:1683–1717

    Google Scholar 

  6. Shortell SM, Bazzoli GJ, Dubbs NL, Kralovec P (2000) Classifying health networks and systems: managerial and policy implications. Health Care Manag Rev 25:9–17

    Article  Google Scholar 

  7. Simar L, Wilson PW (2000) A general methodology for bootstrapping in non-parametric frontier models. J Appl Stat 27:779–802. doi:10.1080/02664760050081951

    Article  Google Scholar 

  8. Sekhon JS (2011) Multivariate and propensity score matching software with automated balance optimization: the matching package for R. J Stat Softw 42:1–52

    Article  Google Scholar 

  9. Diamond A, Sekhon JS (2013) Genetic matching for estimating causal effects: a general multivariate matching method for achieving balance in observational studies. Rev Econ Stat 95:932–945. doi:10.1162/REST_a_00318

    Article  Google Scholar 

  10. Simar L, Wilson PW (2007) Estimation and inference in two-stage, semi-parametric models of production processes. J Econom 136:31–64. doi:10.1016/j.jeconom.2005.07.009

    Article  Google Scholar 

  11. Herwartz H, Strumann C (2012) On the effect of prospective payment on local hospital competition in Germany. Health Care Manag Sci 15:48–62. doi:10.1007/s10729-011-9180-9

    Article  Google Scholar 

  12. Williamson OE (1985) The economic institutions of capitalism: firms, markets, relational contracting. Free Press, New York

    Google Scholar 

  13. Pfeffer J, Salancik GR (1978) The external control of organizations. New York

  14. Williamson OE (1991) Comparative economic organization: the analysis of discrete structural alternatives. Adm Sci Q 36:269–296. doi:10.2307/2393356

    Article  Google Scholar 

  15. Shortell S, Bazzoli GJ, Dubbs N, Kravolec P (2000) Classifying Health Networks and Systems: Managerial and Policy Implications. 25 (4):9–17

  16. Alexander JA, Lee S-YD, Bazzoli GJ (2003) Governance Forms in Health Systems and Health Networks. 28 (3):228–242

  17. Carey K (2003) Hospital cost efficiency and system membership. Inquiry 40:25–38

    Google Scholar 

  18. Proenca EJ, Rosko MD, Dismuke CE (2005) Service collaboration and hospital cost performance: direct and moderating effects. Med Care 43:1250–1258. doi:10.2307/3768212

    Article  Google Scholar 

  19. Bazzoli GJ, Chan B, Shortell SM, D’Aunno TA (2000) The financial performance of hospitals belonging to health networks and systems. Inquiry 37:234–252

    Google Scholar 

  20. Tennyson DH, Fottler MD (2000) Does system membership enhance financial performance in hospitals? Med Care Res Rev 57:29–50

    Article  Google Scholar 

  21. Hollingsworth B (2008) The measurement of efficiency and productivity of health care delivery. Health Econ 17:1107–1128. doi:10.1002/hec.1391

    Article  Google Scholar 

  22. Tiemann O, Schreyögg J (2012) Changes in hospital efficiency after privatization. Health Care Manag Sci 15:310–326. doi:10.1007/s10729-012-9193-z

    Article  Google Scholar 

  23. Fottler M (1987) Health care organizational performance: present and future research. JMS 13:367–391

    Google Scholar 

  24. Federal Statistical Office of Germany (2013) Krankenhausstatistik (Teil I: Grunddaten, Teil II: Diagnosen und Teil III: Kostennachweis) der Jahre 2000–2011, Antrag 2216–2013

  25. Herr A, Schmitz H, Augurzky B (2011) Profit efficiency and ownership of German hospitals. Health Econ 20:660–674. doi:10.1002/hec.1622

    Article  Google Scholar 

  26. Lindlbauer I, Schreyögg J (2014) The relationship between hospital specialization and hospital efficiency: Do different measures of specialization lead to different results? Health Care Manag Sci online published first. doi:10.1007/s10729-014-9275-1

    Google Scholar 

  27. Schmid A, Ulrich V (2013) Consolidation and concentration in the German hospital market: the two sides of the coin. Health Policy 109:301–310. doi:10.1016/j.healthpol.2012.08.012

    Article  Google Scholar 

  28. Jacobs R (2001) Alternative methods to examine hospital efficiency: data envelopment analysis and stochastic frontier analysis. Health Care Manag Sci 4:103–115

    Article  Google Scholar 

  29. Rego G, Nunes R, Costa J (2010) The challenge of corporatisation: the experience of Portuguese public hospitals. 11 (4):367–381. doi:10.1007/s10198-009-0198-6

  30. Charnes A, Cooper W, Rhodes E (1978) Measuring the efficency of decision making units. Eur J Oper Res 6:89–107

    Google Scholar 

  31. Banker R, Charnes A, Cooper W (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag Sci 30:1078–1092. doi:10.1287/mnsc.30.9.1078

    Article  Google Scholar 

  32. Jacobs R, Smith P, Street A (2006) Measuring efficiency in health care: analytic techniques and health policy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  33. Linna M (1998) Measuring hospital cost efficiency with panel data models. Health Econ 7:415–427. doi:10.1002/(SICI)1099-1050(199808)7:5<415::AID-HEC357>3.0.CO;2-9

    Article  Google Scholar 

  34. Smith PC (1997) Model misspecification in data envelopment analysis. Ann Oper Res 73:233–252. doi:10.1023/A:1018981212364

    Article  Google Scholar 

  35. Simar L, Wilson PW (1998) Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Manag Sci 44:49–61. doi:10.1287/mnsc.44.1.49

    Article  Google Scholar 

  36. Team RDC (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  37. Wilson P (2008) FEAR: a software package for frontier efficiency analysis with R. Socio Econ Plan Sci 42:247–254. doi:10.1016/j.seps.2007.02.001

    Article  Google Scholar 

  38. Herr A (2008) Cost and technical efficiency of German hospitals: does ownership matter? Health Econ 17:1057–1071. doi:10.1002/hec.1622

    Article  Google Scholar 

  39. Dyson RG, Allen R, Camanho AS, Podinovski VV, Sarrico CS, Shale EA (2001) Pitfalls and protocols in DEA. Eur J Oper Res 132:245–259. doi:10.1016/S0377-2217(00)00149-1

    Article  Google Scholar 

  40. Jones AM (2007) Identification of treatment effects in Health Economics. 16 (11):1127–1131. doi:10.1002/hec.1302

  41. Blundell R, Dias M (2000) Evaluation methods for nonexperimental data. Fiscal Stud 21:427–468. doi:10.1111/j.1475-5890.2000.tb00031.x

    Article  Google Scholar 

  42. Rubin DB (2007) The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Stat Med 2007 26(1):20–36. doi:10.1002/sim.2739

    Google Scholar 

  43. Rosenbaum P, Rubin D (1985) Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. ASA 39:33–38. doi:10.1080/00031305.1985.10479383

    Google Scholar 

  44. Rubin D (1979) Using Multivariate Sampling and Regression Adjustment to Control Bias in Observational Studies. 74:318–328

  45. Rubin D (1980) Bias Reduction Using Mahalanobis-Metric Matching. 36 (2):293–298

  46. Mebane WRJ, Sekhon JS (1998) R-GENetic optimization using derivatives (RGENOUD). Accessed 2014/04/21

  47. Morgan S, Harding D (2006) Matching estimators of causal effects: prospects and pitfalls in theory and practice. SMR 35:3–60. doi:10.1177/0049124106289164

    Google Scholar 

  48. Frey S, Stargardt T (2012) Performance of compliance and persistence measures in predicting clinical and economic outcomes using administrative data from German sickness funds. Pharmacotherapy 32:880–889. doi:10.1002/j.1875-9114.2012.01120

    Article  Google Scholar 

  49. Ramsahai R, Grieve R, Sekhon JS (2011) Extending iterative matching methods: an approach to improving covariate balance that allows prioritisation. Health Serv Outcomes Res Method 11:95–114. doi:10.1007/s10742-011-0075-5

    Article  Google Scholar 

  50. Sekhon JS, Grieve R (2008) A new non-parametric matching method for bias adjustment with applications to economic evaluations

  51. Sekhon JS, Grieve R (2012) A matching method for improving covariate balance in cost-effectiveness analysis. Health Econ 21:695–714. doi:10.1002/hec.1748

    Article  Google Scholar 

  52. Abadie A, Imbens G (2006) Large sample properties of matching estimators for average treatment effects. Econometrica 74:235–267. doi:10.1111/j.1468-0262.2006.00655.x

    Article  Google Scholar 

  53. Bertrand M, Duflo E, Mullainathan S (2004) How much should we trust differences-in-differences estimates? QJE 119:249–275. doi:10.1162/003355304772839588

    Article  Google Scholar 

  54. Austin P (2009) Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations. Biom J 51:171–184. doi:10.1002/bimj.200810488

    Article  Google Scholar 

  55. Austin P, Mamdani M (2006) A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Stat Med 25:2084–2106. doi:10.1002/sim.2328

    Article  Google Scholar 

  56. Normand S, Landrum M, Guadagnoli E, Ayanian J, Ryan T, Cleary P, McNeil B (2001) Validating recommendations for coronary angiography following an acute myocardial infarction in the elderly: a matched analysis using propensity scores. J Clin Epidemiol 54:387–398. doi:10.1016/S0895-4356(00)00321-8

    Article  Google Scholar 

  57. Provan KG (1984) Interorganizational cooperation and decision making autonomy in a consortium multihospital system. Acad Manag Rev 9:494–504. doi:10.2307/258289

    Google Scholar 

  58. Dranove D, Durkac A, Shanley M (1996) Are multihospital systems more efficient? Health Aff 15:100–104. doi:10.1377/hlthaff.15.1.100

    Article  Google Scholar 

  59. Williamson OE (1975) Markets and hierarchies: a study in the internal organizations: analysis and antitrust implications. Free Press, New York

    Google Scholar 

  60. Wilcox-Gök V (2002) The effects of for-profit status and system membership on the financial performance of hospitals. Appl Econ 34:479–489. doi:10.1080/00036840110044180

    Article  Google Scholar 

  61. Chukmaitov AS, Bazzoli GJ, Harless DW, Hurley RE, Devers KJ, Zhao M (2009) Variations in inpatient mortality among hospitals in different system types, 1995 to 2000. Med Care 47:466–473. doi:10.1097/MLR.0b013e31818dcdf0

    Article  Google Scholar 

  62. Madison K (2004) Multihospital system membership and patient treatments, expenditures, and outcomes. Health Serv Res 39:749–769

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a research grant from the Federal Ministry of Education and Research (BMBF) in Germany (Grant number: 01FL10055). The sponsor had no role in the study design, collection and analysis of data; the writing of the report; or the submission of the paper for publication. The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Schreyögg.

Appendix Table 1. Balance in measured covariates before and after matching

Appendix Table 1. Balance in measured covariates before and after matching

 

Unmatchend sample

Matched sample

Group

Intervention (n = 399)

Control (n = 465)

di (%)

Intervention (n = 399)

Control (n = 399)

di (%)

Mean

Mean

 

Mean

Mean

 

Weighted cases (in 1,000)

9.7

11.3

6.4

9.7

9.5

1.6

Beds

297.5

340.8

4.9

297.5

292.4

1.1

Leased beds

0.071

0.051

9.3

0.071

0.071

0.9

Market concentration

0.196

0.200

2.4

0.197

0.193

1.2

Technical efficiency

0.598

0.604

3.7

0.598

0.598

0.7

Cost efficiency

0.338

0.360

2.8

0.320

0.321

0.6

Operating margin

0.013

0.015

11.9

0.013

0.016

5.3

ROI

0.007

0.019

3.2

0.007

0.009

1.7

EBIT

−56,711

243.282

20.2

−56,711

−56,469

4.0

EAT

75.463

239.331

8.5

75.463

78.281

4.7

  1. Number of hospitals varies across the different models

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Büchner, V.A., Hinz, V. & Schreyögg, J. Health systems: changes in hospital efficiency and profitability. Health Care Manag Sci 19, 130–143 (2016). https://doi.org/10.1007/s10729-014-9303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10729-014-9303-1

Keywords

Navigation