A new model for the length of stay of hospital patients

Abstract

Hospital Length of Stay (LoS) is a valid proxy to estimate the consumption of hospital resources. Average LoS, however, albeit easy to quantify and calculate, can be misleading if the underlying distribution is not symmetric. Therefore the average does not reflect the nature of such underlying distribution and may mask different effects. This paper uses routinely collected data of an Italian hospital patients from different departments over a period of 5 years. This will be the basis for a running example illustrating the alternative models of patients length of stay. The models includes a new density model called Hypergamma. The paper concludes by summarizing these various modelling techniques and highlighting the use of a risk measure in bed planning.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Math. Finance 3:203228. Retrieved February 2011

    Google Scholar 

  2. 2.

    Asmussen S, Nerman O, Olsson M (1996) Fitting phase-type distribution via EM algorithm. Scand J Statist 23:419–441

    Google Scholar 

  3. 3.

    Bobbio A, Cumani (1992) Computer performance evaluation: 33–46

  4. 4.

    Cheridito P, Delbaen F, Kupper M (2005) Coherent and convex monetary risk measures for unbounded cádlág processes. Finance Stoch 9:1713–1732

    Article  Google Scholar 

  5. 5.

    Costa AX (2003) Mathematical modelling and simulation for planning critical care capacity. Anaesthesia 58:320327

    Article  Google Scholar 

  6. 6.

    Delbaen F (2002) Coherent measures of risk on general probability spaces. In: Advances in finance and stochastics. Essays in honour of dieter sondermann. Springer-Verlag

  7. 7.

    Fackrell M (2008) Modelling healthcare system with phase-type distributions Health Care Manage Sci

  8. 8.

    Faddy MJ, McClean SI (1999) Analysing data on length of stay of hospital patients using phase-type distribution. Appl Stoch Models Bus Ind 15:311–317

    Article  Google Scholar 

  9. 9.

    Fang KT, Yang Y (1994) Number-theoretic methods in statistics. Chapman&Hall, London

    Google Scholar 

  10. 10.

    Harper P, Shahani A (2002) Modelling for the planning and management of bed capacities in hospitals. J Opl Res Soc 53:1118

    Article  Google Scholar 

  11. 11.

    He Q, Zhang H (2005) A note on unicyclic representation of phase-type distributions. Stoch Models 21:465– 483

    Article  Google Scholar 

  12. 12.

    McClean SI, Millard PH (1993) Patterns of length of stay after admission in geriatric medicine: an event history approach. Stat 42:263–274

    Google Scholar 

  13. 13.

    Millard PH (1994) Current measures and their defects. In: Modelling hospital resource use: a different approach to the planning and control of health care systems Millard P H, McClean S I (eds), Royal Society of Medicine, London

  14. 14.

    Neuts MF (1975) Probability distributions of phase-type. In: Liber amicorum Prof. Emeritus H. Florin, Department of Mathematics, University of Louvain, Louvain, pp 173206

  15. 15.

    Niederreiter H (1992) Random number generation and quasi-monte carlo methods. SIAM, Philadelphia

    Google Scholar 

  16. 16.

    O’Cinneide CA (1999) Phase-type distributions: open problems and few properties. Commun Stat Stoch Models 15:731–757

    Article  Google Scholar 

  17. 17.

    Ross SM Introduction to probability models, 5th edn. Academic, San Diego

  18. 18.

    Ross SM Stochastic process, Second Edition. Wiley

  19. 19.

    Vasilakis C, Marshall AH (2005) Modelling nationwide hospital length of stay: opening the black box. J Oper Res Soc 56:862869

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported in part by the administrative division of the hospital Campus Bio-Medico.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marco Papi.

Appendix section

Appendix section

A function \(g:\mathbb {R}\rightarrow \mathbb {R}\) is a probability density function of a continuous random variable if

  • g is a non-negative Lebesgue-integrable function;

  • \({\int }_{-\infty }^{+\infty }\, g(x)\, dx=1\).

Then we have the following result

Proposition 1

Let g be a probability density function. For every α 1 , α 2 , …, α n ≥0 with α 1 2 +⋯+α n =1, and ł 1 , ł 2 , …, ł n > 0, the function

$$h(\tau)=\sum\limits_{i=1}^{n}\, \alpha_{i} g(-\l_{i}\tau)\l_{i}$$
(17)

is a probability density function.

Proof

It suffices to prove that \({\int }_{\mathbb {R}}\, h(\tau )\, d\tau =1\). In fact, we have

$$\begin{array}{@{}rcl@{}} {\int}_{\mathbb{R}} h(\tau) d\tau = \sum\limits_{i=1}^{n} \alpha_{i}{\int}_{\mathbb{R}}g(-\tau \lambda_{i}) \lambda_{i} d\tau. \end{array}$$
(18)

For any integral, in the sum, we apply the change of variable τ = −s/λ i . Thus

$$\sum\limits_{i=1}^{n} \alpha_{i}{\int}_{\mathbb{R}}g(-\tau \lambda_{i}) \lambda_{i} d\tau = \sum\limits_{i=1}^{n} \alpha_{i}{\int}_{\mathbb{R}}g(s) ds = \sum\limits_{i=1}^{n} \alpha_{i}=1.\\$$
(19)

In the same way it is possible to evaluate the mean and the variance of a random variable distributed according to a Hypergamma density function:

$$\begin{array}{@{}rcl@{}} &&\mathbb{E}[X] = \frac{k}{\theta}\, \sum\limits_{i=1}^{n} \frac{\alpha_{i}}{\lambda_{i}}, \end{array}$$
(20)
$$\begin{array}{@{}rcl@{}} &&\mathbb{E}[(X-\mathbb{E}[X])^{2}] = \frac{(k^{2}+k)}{\theta^{2}}\, \sum\limits_{i=1}^{n} \frac{\alpha_{i}}{{\lambda_{i}^{2}}}-\biggl(\frac{k}{\theta}\, \sum\limits_{i=1}^{n} \frac{\alpha_{i}}{\lambda_{i}}\biggr)^{2}, \end{array}$$
(21)
$$\begin{array}{@{}rcl@{}} &&\mathbb{E}[e^{Xt}] = \sum\limits_{i=1}^{n} \alpha_{i} \biggl(1- \frac{1}{\theta} \frac{t}{\lambda_{i}}\biggr)^{-k}. \end{array}$$
(22)

Here the moment generating function is well defined on the interval t < 𝜃min(λ 1, λ 2, . . . , λ n ).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Papi, M., Pontecorvi, L. & Setola, R. A new model for the length of stay of hospital patients. Health Care Manag Sci 19, 58–65 (2016). https://doi.org/10.1007/s10729-014-9288-9

Download citation

Keywords

  • Length of stay
  • Bed planning
  • PH distribution
  • Hospital resources

Mathematics Subject Classifications (2010)

  • 62H12
  • 60E60
  • 60J60