Skip to main content
Log in

Reducing Emergency Medical Service response time via the reallocation of ambulance bases

  • Published:
Health Care Management Science Aims and scope Submit manuscript

Abstract

The demand for highly efficient and effective services and consumer goods is an essential prerequisite for modern organizations. In healthcare, efficiency and effectiveness mean reducing disabilities and maintaining human life. One challenge is guaranteeing rapid Emergency Medical Service (EMS) response. This study analyzes the EMS of Belo Horizonte, Brazil, using two modeling techniques: optimization and simulation. The optimization model locates ambulance bases and allocates ambulances to those bases. A simulation of this proposed configuration is run to analyze the dynamic behavior of the system. The main assumption is that optimizing the ambulance base locations can improve the system response time. Feasible solutions were found and the current system may be improved while considering economic and operational changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Filho EM, Torres NT, Magalhães MS, De Oliveira MJF (2007) Simulação a eventos discretos aplicada ao setor de triagem do hospital Antônio Pedro. In: Simpósio de Pesquisa Operacional e Logística da Marinha, Rio de Janeiro, Brazil, pp 1001–1013 (in Portuguese)

  2. Destri Junior J (2005) Sistema de apoio à decisão espacial no serviço de atendimento móvel de urgência em vias de trânsito. Doctoral thesis, Universidade Federal de Santa Catarina (in Portuguese)

  3. Instituto Brasileiro De Geografia e Estatística (IBGE) (2009) Indicadores sócio demográficos e de saúde no Brasil. IBGE, Rio de Janeiro, in Portuguese

    Google Scholar 

  4. Pan American Health Organization (PAHO) (2009) Información y análisis de salud: situación de salud en las Américas: Indicadores Básicos. Pan American Health Organization (PAHO), Washington, DC, in Spanish

    Google Scholar 

  5. Brasil, Ministério da Saúde do Brasil. Política Nacional de Atenção às Urgências http://portalsaude.saude.gov.br/portalsaude/index.html. Accessed 10 Mar 2013 (in Portuguese)

  6. Silva PMS, Pinto LR (2010) Emergency medical systems analysis by simulation and optimization. In: Proceedings of the 2010 Winter Simulation Conference, pp 2422–2432

  7. Takeda RA, Widmer JA, Morabito R (2001) Uma proposta alternativa para avaliação do desempenho de sistemas de transporte emergencial de saúde brasileiros. Transportes 9:9–27 (in Portuguese)

    Article  Google Scholar 

  8. Nafarrate A, Fowler JW, Wu T (2011) Design of centralized ambulance diversion policies using simulation-optimization. Proceeding of the 2011 Winter Simulation Conference, pp. 1251–1262

  9. Owen SH, Daskin MS (1998) Strategic facility location: a review. Eur J Oper Res 111:423–447

    Article  Google Scholar 

  10. Sahin G, Sural H (2007) A review of hierarchical facility location models. Comput Oper Res 34:2310–2331

    Article  Google Scholar 

  11. Cooper L (1963) Location-allocation problems. Oper Res 11:331–343

    Article  Google Scholar 

  12. Drezner Z (1995) Facility location: a survey of applications and methods, 1st edn. Springer, New York

    Book  Google Scholar 

  13. Borrás F, Pastor JT (2004) Modelos probabilísticos de localización por cubrimiento: una panorámica. Centro de Investigación Operativa, Universidad Miguel Hernández de Elche, Elche (in Spanish)

    Google Scholar 

  14. Snyder LV (2006) Facility location under uncertainty: a review. IIE Trans 38:537–554

    Article  Google Scholar 

  15. Goldberg JB (2004) Operations research models for the deployment of emergency services vehicles. EMS Manag J 1:20–39

    Google Scholar 

  16. Brotcorne L, Laporte G, Semet F (2003) Ambulance location and relocation models. Eur J Oper Res 147:451–463

    Article  Google Scholar 

  17. Berlin GN, Liebman JC (1974) Mathematical analysis of emergency ambulance location. Socio Econ Plan Sci 8:323–328

    Article  Google Scholar 

  18. Mandell MB (1998) Covering models for two-tiered emergency medical services systems. Locat Sci 6:355–368

    Article  Google Scholar 

  19. Rajagopalan HK, Saydam C, Xiao JA (2008) Multiperiod set covering location model for dynamic redeployment of ambulances. Comput Oper Res 35:814–826

    Article  Google Scholar 

  20. Tavakoli A, Lightner C (2004) Implementing a mathematical model for locating EMS vehicles in Fayetteville, NC. Comput Oper Res 31:1549–1563

    Article  Google Scholar 

  21. Jardim RX, Conceição SV, Carvalho CRV (2004) Localização estratégica para o serviço de atendimento móvel de urgência na região metropolitana de Belo Horizonte. In: XXIV Encontro Nacional de Engenharia de Produção, Florianópolis, SC, Brazil, 3–5 November 2004, pp. 2958–2965 (in Portuguese)

  22. Iannoni AP, Morabito R, Saydam C (2009) An optimization approach for ambulance location and the districting of the response segments on highways. Eur J Oper Res 195:528–542

    Article  Google Scholar 

  23. Iannoni AP, Morabito R (2007) A multiple dispatch and partial backup hypercube queuing model to analyze emergency medical systems on highways. Trans Res Part E 43:755–771

    Article  Google Scholar 

  24. Morabito R, Chiyoshi F, Galvão RD (2008) Non-homogeneous servers in emergency medical systems: practical applications using the hypercube queueing model. Soc Eco Plan Sci 42:255–270

    Article  Google Scholar 

  25. Robinson S (2005) Discrete-event simulation: from the pioneers to the present, what next? J Oper Res Soc 56:619–629

    Article  Google Scholar 

  26. Carson JS (2005) Introduction to modeling and simulation. In: Proceedings of the 2005 Winter Simulation Conference, pp 16–23

  27. Fitzsimmons JA (1971) An emergency medical system simulation model. In: Proceedings of the 1971 Winter Simulation Conference, New York, pp 18–25

  28. Sabbadini FS, Gonçalves AA (2005) A simulação como ferramenta de apoio a tomada de decisão em serviços de saúde. (REAH) Revista Eletrônica de Administração Hospitalar 1n. 4 (in Portuguese)

  29. Takeda RA (2000) Uma contribuição para avaliar o desempenho de sistemas de transporte emergencial de saúde. Doctoral thesis, Universidade Federal de São Paulo (in Portuguese)

  30. Pons PT, Markovchick VJ (2002) Eigth minutes or less: does the ambulance response time guideline impact trauma patient outcome? J Emerg Med 23:43–48

    Article  Google Scholar 

  31. Al-Ghamdi AS (2002) Emergency medical service rescue times in Riyadh. Accid Anal Prev 34:499–505

    Article  Google Scholar 

  32. Wu CH, Hwang KP (2009) Using a discrete-event simulation to balance ambulance availability and demand in static deployment systems. Acad Emerg Med 16:1359–1366

    Article  Google Scholar 

  33. Novaes AG (1989) Sistemas logísticos: transporte, armazenagem e distribuição física de produtos. Editora Edgard Blucher, São Paulo (in Portuguese)

    Google Scholar 

Download references

Conflict of interest

The authors declare they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Nogueira Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogueira, L.C., Pinto, L.R. & Silva, P.M.S. Reducing Emergency Medical Service response time via the reallocation of ambulance bases. Health Care Manag Sci 19, 31–42 (2016). https://doi.org/10.1007/s10729-014-9280-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10729-014-9280-4

Keywords

MSC codes

Navigation