Skip to main content
Log in

Time-dependent ambulance allocation considering data-driven empirically required coverage

  • Published:
Health Care Management Science Aims and scope Submit manuscript

Abstract

Empirical studies considering the location and relocation of emergency medical service (EMS) vehicles in an urban region provide important insight into dynamic changes during the day. Within a 24-hour cycle, the demand, travel time, speed of ambulances and areas of coverage change. Nevertheless, most existing approaches in literature ignore these variations and require a (temporally and spatially) fixed (double) coverage of the planning area. Neglecting these variations and fixation of the coverage could lead to an inaccurate estimation of the time-dependent fleet size and individual positioning of ambulances. Through extensive data collection, now it is possible to precisely determine the required coverage of demand areas. Based on data-driven optimization, a new approach is presented, maximizing the flexible, empirically determined required coverage, which has been adjusted for variations due to day-time and site. This coverage prevents the EMS system from unavailability of ambulances due to parallel operations to ensure an improved coverage of the planning area closer to realistic demand. An integer linear programming model is formulated in order to locate and relocate ambulances. The use of such a programming model is supported by a comprehensive case study, which strongly suggests that through such a model, these objectives can be achieved and lead to greater cost-effectiveness and quality of emergency care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baṡar A, Catay B, Ünlüyurt T (2011) A multi-period double coverage approach for locating the emergency medical service stations in Istanbul. J Oper Res Soc 62(4):627–637

    Article  Google Scholar 

  2. Batta R, Mannur N (1990) Covering-location models for emergency situations that require multiple response units. Manag Sci 36(1):16–23

    Article  MathSciNet  MATH  Google Scholar 

  3. Brotcorne L, Laporte G, Semet F (2003) Ambulance location and relocation models. Eur J Oper Res 147(3):451–463

    Article  MathSciNet  MATH  Google Scholar 

  4. Channouf N, L’Ecuyer P, Ingolfsson A, Avramidis A (2007) The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta. Health Care Manag Sci 10(1):25–45

    Article  PubMed  Google Scholar 

  5. Church R, ReVelle C (1974) The maximal covering lovation problem. Pap Reg Sci 32(1):101–118

    Article  Google Scholar 

  6. Daskin MA (1983) maximum expected covering location model: Formulation, properties and heuristic solution. Transp Sci 17(1):48–70

    Article  Google Scholar 

  7. Daskin M, Stern E (1981) A hierarchical objective set covering model for emergency medical service vehicle deployment. Transp Sci 15(2):137–152

    Article  MathSciNet  Google Scholar 

  8. Degel D, Lutter P (2013) A robust formulation of the uncertain set covering problem. Workingpaper, Bochum

    Google Scholar 

  9. Degel D, Wiesche L, Rachuba S, Werners B (2013) Dynamic ambulance location providing suitable coverage for time-dependent demand. In: Gunal M, Gunes ED, Cayirli TML, Ormeci E (eds) Conference proceedings on operational research applied to health services (ORAHS) 2013

  10. Dick W (2003) Anglo-American vs. Franco-German emergency medical services system. Prehospital Disaster Med 18(1):39–35

    Article  Google Scholar 

  11. Doerner K, Gutjahr W, Hartl R, Karall M, Reimann M (2005) Heuristic solution of an extended double-coverage ambulance location problem for Austria. CEJOR 13(4):325–340

    MATH  Google Scholar 

  12. Ehrgott M (2005) Multicriteria optimization. Springer

  13. Farahani R, Seifi M, Asgari N (2010) Multiple criteria facility location problems: a survey. Appl Math Model 34(7):1689–1709

    Article  MathSciNet  MATH  Google Scholar 

  14. Feuerwehr-Bochum F (2008) Rettungsdienstbedarfsplan der Stadt Bochum 2008–2012. Technical report, Feuerwehr Bochum

  15. Fico. Xpress-optimizer referenz manual. Fico Xpress optimization suite (www.fico.com), Release 20.00, 3 June 2009

  16. Fujiwara O, Makjamroen T, Gupta K K (1987) Ambulance deployment analysis: a case study of Bangkok. Eur J Oper Res 31(1):9–18

    Article  Google Scholar 

  17. Gendreau M, Laporte G, Semet F (1997) Solving an ambulance location model by tabu search. Locat Sci 5(2):75–88

    Article  MATH  Google Scholar 

  18. Gendreau M, Laporte G, Semet F (2001) A dynamic model and parallel tabu search heuristic for real-time ambulance relocation. Parallel Comput 27:1641–1653

    Article  MATH  Google Scholar 

  19. Goldberg J, Dietrich R, Chen JM, Mitwasi G, Valenzuela T, Criss E (1990) Validating and applying a model for locating emergency medical vehicles in Tuczon, AZ. Eur J Oper Res 49(3):308–324

    Article  Google Scholar 

  20. Hogan K, ReVelle C (1986) Concepts and applications of backup coverage. Manag Sci 32(11):1434–1444

    Article  Google Scholar 

  21. Ingolfsson A, Budge S, Erkut E (2008) Optimal ambulance location with random delays and travel times. Health Care Manag Sci 11(3):262–274

    Article  PubMed  Google Scholar 

  22. Kok A, Hans E, Schutten J (2012) Vehicle routing under timedependent travel times: the impact of congestion avoidance.Comput Oper Res 39(5):910–918

    Article  MATH  Google Scholar 

  23. Kritzinger S, Doerner K, Hartl R, Kiechle G, Stadler H, Manohar S (2012) Using traffic information for time-dependent vehicle routing. Procedia - Soc Behav Sci 39:217–229

    Article  Google Scholar 

  24. Krueger U, Schimmelpfeng K (2012) Characteristics of service requests and service processes of fire and rescue service dispatch centers. Health Care Manag Sci 16(1):1–13

    Article  PubMed  Google Scholar 

  25. Laporte G, Louveaux F, Semet F, Thirion A (2009) Applications of the double standard model for ambulance location. In: Innovations in distribution logisticspages. Berlin, pp 235–249

  26. Li X, Zhao Z, Zhu X, Wyatt T (2011) Covering models and optimization techniques for emergency response facility location and planning: a review. Math Methods Oper Res 74(3):281–310

    Article  MathSciNet  MATH  Google Scholar 

  27. McLay L, Mayorga M (2010) Evaluating emergency medical service performance measures. Health Care Manag Sci 13(2):124–136

    Article  PubMed  Google Scholar 

  28. Narasimhan S, Pirkul H, Schilling D (1992) Capacitated emergency facility siting with multiple levels of backup. Ann Oper Res 40(1):323–337

    Article  MATH  Google Scholar 

  29. Pirkul H, Schilling D (1988) The siting of emergency service facilities with workload capacities and backup service. Manag Sci 34(7):896–908

    Article  Google Scholar 

  30. Rajagopalan H, Saydam C (2009) A minimum expected response model: formulation, heuristic solution, and application. Socio Econ Plan Sci 43(4):253–262

    Article  Google Scholar 

  31. Rajagopalan H, Saydam C, Setzler H, Sharer E (2012) Decision making for emergency medical services: community-based operations research. Int Ser Oper Res Man Sci 167:275–296

    Article  Google Scholar 

  32. Rajagopalan H, Saydam C, Xiao J (2008) A multiperiod set covering location model for dynamic redeployment of ambulances. Comput Oper Res 35(3):814–826

    Article  MATH  Google Scholar 

  33. Repede J, Bernardo J (1994) Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky. Eur J Oper Res 75(3):567–581

    Article  Google Scholar 

  34. ReVelle C (1989) Review, extension and prediction in emergency service siting models. Eur J Oper Res 40(1):58–69

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Revelle C, Hogan K (1989) The maximum availability location problem. Transp Sci 23(3):192–200

    Article  MathSciNet  MATH  Google Scholar 

  36. Schmid V (2012) Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming. Eur J Oper Res 219(3):611–621

    Article  PubMed Central  PubMed  MATH  Google Scholar 

  37. Schmid V, Doerner K (2010) Ambulance location and relocation problems with time-dependent travel times. Eur J Oper Res 207(3):1293–1303

    Article  PubMed Central  MathSciNet  PubMed  MATH  Google Scholar 

  38. Schmiedel R (2011) Leistungen des Rettungsdienstes 2008/09: Analyse des Leistungsniveaus im Rettungsdienst für die Jahre 2008 und 2009. Bergisch Gladbach

  39. Schmiedel R, Betzler E (1999) Ökonomische Rahmenbedingungen im Rettungsdienst: Teil II - Kostenstruktur im Rettungsdienst. Notfall & Rettungsmedizin 2:101–104

    Article  Google Scholar 

  40. Toregas C, Swain R, Charles R, Lawrence B (1971) The location of emergency service facilities. Oper Res 19(6):1363–1373

    Article  MATH  Google Scholar 

  41. Werners B, Wülfing T (2010) Robust optimization of internal transports at a parcel sorting center operated by Deutsche post world net. Eur J Oper Res 201(2):419–426

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research is financially supported by Stiftung Zukunft NRW. The authors are grateful to staff members of the Feuerwehr und Rettungsdienst Bochum for detailed insights.

The authors would like to thank the associate editor and two anonymous reviewers for their valuable comments. These suggestions have helped to improve the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Degel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degel, D., Wiesche, L., Rachuba, S. et al. Time-dependent ambulance allocation considering data-driven empirically required coverage. Health Care Manag Sci 18, 444–458 (2015). https://doi.org/10.1007/s10729-014-9271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10729-014-9271-5

Keywords

Navigation