Advertisement

An Incremental Algorithm for Computing the Grounded Extension of Dynamic Abstract Argumentation Frameworks

  • Gianvincenzo Alfano
  • Sergio Greco
  • Francesco ParisiEmail author
Article
  • 46 Downloads

Abstract

Several formalisms have been introduced to model disputes between agents. Abstract argumentation is a simple, yet powerful formalism for modeling disputes by abstracting from the internal structure of arguments. Much work has been done to characterize fast algorithms for ‘static’ argumentation frameworks which are assumed to be fixed, in the sense that they do not change during a dispute. However, argumentation frameworks are highly dynamic in practice. For instance, applications of argumentation for negotiation and persuasion are usually based on protocols where agents state their arguments and attacks one after the other in a dynamic process during which the outcome of the debate evolves. We focus on one of the most popular argumentation semantics, namely the grounded semantics, and deal with the problem of recalculating the extensions of argumentation frameworks after adding or deleting attacks or arguments. In particular, we propose an incremental algorithm for the efficient computation of the grounded semantics, useful in dynamic contexts where argumentation frameworks are continuously updated to consider new information. We report on experiments showing that our incremental algorithm is on average faster than CoQuiAAS, the solver that won the last edition of the international competition on computational models of argumentation for the task of computing the grounded extension of an argumentation framework.

Keywords

Abstract argumentation Dynamic argumentation Grounded semantics 

Notes

References

  1. Alfano G, Greco S, Parisi F (2017a) Efficient computation of extensions for dynamic abstract argumentation frameworks: an incremental approach. In: Proceedings of the twenty-sixth international joint conference on artificial intelligence (IJCAI), pp 49–55Google Scholar
  2. Alfano G, Greco S, Parisi F (2017b) Computing stable and preferred extensions of dynamic bipolar argumentation frameworks. In: Proceedings of the 1st workshop on advances in argumentation in artificial intelligence co-located with XVI international conference of the Italian Association for artificial intelligence (\(AI{^3}@AI*IA\)), pp 28–42Google Scholar
  3. Alfano G, Greco S, Parisi F (2018a) A meta-argumentation approach for the efficient computation of stable and preferred extensions in dynamic bipolar argumentation frameworks. Intell Artif 12(2):193–211Google Scholar
  4. Alfano G, Greco S, Parisi F (2018b) Computing extensions of dynamic abstract argumentation frameworks with second-order attacks. In: Proceedings of the 22nd international database engineering & applications symposium (IDEAS), pp 183–192Google Scholar
  5. Alfano G, Greco S, Parisi F, Simari GI, Simari GR (2018c) Incremental computation of warranted arguments in dynamic defeasible argumentation: the rule addition case. In: Proceedings of the 33rd annual ACM symposium on applied computing (SAC), pp 911–917Google Scholar
  6. Alfano G, Greco S, Parisi F, Simari GI, Simari GR (2018d) An incremental approach to structured argumentation over dynamic knowledge bases. In: Proceedings of the sixteenth international conference of principles of knowledge representation and reasoning (KR), pp 78–87Google Scholar
  7. Alfano G, Greco S, Parisi F (2019) An efficient algorithm for skeptical preferred acceptance in dynamic argumentation frameworks. In: Proceedings of international joint conference on artificial intelligence (IJCAI)Google Scholar
  8. Amgoud L, Vesic S (2012) Revising option status in argument-based decision systems. J Logic Comput 22(5):1019–1058CrossRefGoogle Scholar
  9. Baroni P, Caminada M, Giacomin M (2011) An introduction to argumentation semantics. Knowl Eng Rev 26(4):365–410CrossRefGoogle Scholar
  10. Baroni P, Giacomin M, Liao B (2014) On topology-related properties of abstract argumentation semantics. A correction and extension to dynamics of argumentation systems: a division-based method. Artif Intell 212:104–115CrossRefGoogle Scholar
  11. Bastos MT, Puschmann C, Travitzki R (2013) Tweeting across hashtags: overlapping users and the importance of language, topics, and politics. In: 24th ACM conference on hypertext and social media (part of ECRC) (HT), pp 164–168Google Scholar
  12. Baumann R (2011) Splitting an argumentation framework. In: Proceedings of international conference on logic programming and nonmonotonic reasoning (LPNMR), pp 40–53Google Scholar
  13. Baumann R (2012) Normal and strong expansion equivalence for argumentation frameworks. Artif Intell 193:18–44CrossRefGoogle Scholar
  14. Baumann R (2014) Context-free and context-sensitive kernels: update and deletion equivalence in abstract argumentation. In: Proceedings of the European conference on artificial intelligence (ECAI), pp 63–68Google Scholar
  15. Baumann R, Brewka G (2010) Expanding argumentation frameworks: enforcing and monotonicity results. In: Proceedings of international conference computational models of argument (COMMA), pp 75–86Google Scholar
  16. Baumann R, Brewka G, Dvorák W, Woltran S (2012) Parameterized splitting: a simple modification-based approach. In: Correct reasoning—essays on logic-based AI in honour of Vladimir Lifschitz, pp 57–71Google Scholar
  17. Bench-Capon TJM, Dunne Paul E (2007) Argumentation in artificial intelligence. Artif Intell 171(1015):619–641CrossRefGoogle Scholar
  18. Bentahar J, Labban J (2011) An argumentation-driven model for flexible and efficient persuasive negotiation. Group Decis Negot 20(4):411–435CrossRefGoogle Scholar
  19. Bisquert P, Cayrol C, de Saint-Cyr FD, Lagasquie-Schiex M-C (2013) Characterizing change in abstract argumentation systems. In: Trends in belief revision and argumentation dynamics, vol 48, pp 75–102Google Scholar
  20. Bistarelli S, Rossi F, Santini F (2017) A conarg-based library for abstract argumentation. In: 29th IEEE international conference on tools with artificial intelligence (ICTAI), pp 374–381Google Scholar
  21. Boella G, Kaci S, van der Torre LWN (2009a) Dynamics in argumentation with single extensions: attack refinement and the grounded extension (extended version). In: Proceedings of the international workshop on argumentation in multi-agent systems (ArgMAS), pp 150–159Google Scholar
  22. Boella G, Kaci S, van der Torre LWN (2009b) Dynamics in argumentation with single extensions: abstraction principles and the grounded extension. In: Proceedings of the European conference on symbolic and quantitative approaches to reasoning with uncertainty (ECSQARU), pp 107–118Google Scholar
  23. Caminada M (2006) Semi-stable semantics. In: Proceedings of the international conference on computational models of argument (COMMA), pp 121–130Google Scholar
  24. Cayrol C, de Saint-Cyr FD, Lagasquie-Schiex M-C (2008) Revision of an argumentation system. In: Proceedings of the international conference on principles of knowledge represent and reasoning (KR), pp 124–134Google Scholar
  25. Cayrol C, de Saint-Cyr FD, Lagasquie-Schiex M-C (2010) Change in abstract argumentation frameworks: adding an argument. J Artif Intell Res 38:49–84CrossRefGoogle Scholar
  26. Charwat G, Dvorák W, Gaggl SA, Wallner JP, Woltran S (2015) Methods for solving reasoning problems in abstract argumentation—a survey. Artif Intell 220:28–63CrossRefGoogle Scholar
  27. de Saint-Cyr FD, Bisquert P, Cayrol C, Lagasquie-Schiex M-C (2016) Argumentation update in YALLA (yet another logic language for argumentation). Int J Approx Reason 75:57–92CrossRefGoogle Scholar
  28. Doutre S, Herzig A, Perrussel L (2014) A dynamic logic framework for abstract argumentation. In: Proceedings of the fourteenth international conference of principles of knowledge representation and reasoning (KR)Google Scholar
  29. Dung PM (1995) On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif Intell 77(2):321–358CrossRefGoogle Scholar
  30. Dung PM, Mancarella P, Toni F (2007) Computing ideal sceptical argumentation. Artif Intell 171(10–15):642–674CrossRefGoogle Scholar
  31. Dunne PE (2009) The computational complexity of ideal semantics. Artif Intell 173(18):1559–1591CrossRefGoogle Scholar
  32. Dunne PE, Wooldridge M (2009) Complexity of abstract argumentation. In: Argumentation in artificial intelligence, pp 85–104Google Scholar
  33. Dvorák W, Woltran S (2010) Complexity of semi-stable and stage semantics in argumentation frameworks. Inf Process Lett 110(11):425–430CrossRefGoogle Scholar
  34. Dvorák W, Pichler R, Woltran S (2010) Towards fixed-parameter tractable algorithms for argumentation. In: Proceedings of the international conference on principles of knowledge representation and reasoning (KR)Google Scholar
  35. Eiter T, Strass H, Truszczynski M, Woltran S (eds) (2015) Advances in knowledge representation, logic programming, and abstract argumentation, volume 9060 of lecture notes in computer science. Springer, BerlinGoogle Scholar
  36. Falappa MA, Garcia AJ, Kern-Isberner G, Simari GR (2011) On the evolving relation between belief revision and argumentation. Knowl Eng Rev 26(1):35–43CrossRefGoogle Scholar
  37. Fazzinga B, Flesca S, Parisi F (2015) On the complexity of probabilistic abstract argumentation frameworks. ACM Trans Comput Logic 16(3):22CrossRefGoogle Scholar
  38. Fazzinga B, Flesca S, Parisi F (2016) On efficiently estimating the probability of extensions in abstract argumentation frameworks. Int J Approx Reason 69:106–132CrossRefGoogle Scholar
  39. Greco S, Parisi F (2016a) Efficient computation of deterministic extensions for dynamic abstract argumentation frameworks. In: Proceedings of the European conference on artificial intelligence (ECAI), pp 1668–1669Google Scholar
  40. Greco S, Parisi F (2016b) Incremental computation of deterministic extensions for dynamic argumentation frameworks. In: Proceedings of the European conference on logics in artificial intelligence (JELIA), pp 288–304Google Scholar
  41. Greco S, Parisi F (2017) Incremental computation of grounded semantics for dynamic abstract argumentation frameworks. In: Second international workshop on conflict resolution in decision making (COREDEMA 2016), revised selected papers, pp 66–81Google Scholar
  42. Kökciyan N, Yaglikci N, Yolum P (2017) An argumentation approach for resolving privacy disputes in online social networks. ACM Trans Internet Technol 17(3):27:1–27:22CrossRefGoogle Scholar
  43. Lagniez J-M, Lonca E, Mailly J-G (2015) CoQuiAAS: a constraint-based quick abstract argumentation solver. In: ICTAI, pp 928–935Google Scholar
  44. Liao BS, Jin L, Koons RC (2011) Dynamics of argumentation systems: a division-based method. Artif Intell 175(11):1790–1814CrossRefGoogle Scholar
  45. Lifschitz V, Turner H (1994) Splitting a logic program. In: Proceedings of the international conference on logic programming (ICLP), pp 23–37Google Scholar
  46. Modgil S, Prakken H (2011) Revisiting preferences and argumentation. In: Proceedings of the international joint conference on artificial intelligence (IJCAI), pp 1021–1026Google Scholar
  47. Oikarinen E, Woltran S (2011) Characterizing strong equivalence for argumentation frameworks. Artif Intell 175(14–15):1985–2009CrossRefGoogle Scholar
  48. Parsons S, McBurney P (2003) Argumentation-based dialogues for agent co-ordination. Group Decis Negot 12(5):415–439CrossRefGoogle Scholar
  49. Pollock JL (1998) Perceiving and reasoning about a changing world. Comput Intell 14(4):498–562CrossRefGoogle Scholar
  50. Rahwan I, Simari GR (2009) Argumentation in artificial intelligence, 1st edn. Springer, BerlinGoogle Scholar
  51. Thimm M, Villata S (2017) The first international competition on computational models of argumentation: results and analysis. Artif Intell 252:267–294CrossRefGoogle Scholar
  52. Thimm M, Villata S, Cerutti F, Oren N, Strass H, Vallati M (2016) Summary report of the first international competition on computational models of argumentation. AI Mag 37(1):102CrossRefGoogle Scholar
  53. Xu Y, Cayrol C (2015) The matrix approach for abstract argumentation frameworks. In: Proceedings of the international workshop on theory and applications of formal argumentation (TAFA), pp 243–259Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Informatics, Modeling, Electronics and System Engineering (DIMES)University of CalabriaRendeItaly

Personalised recommendations