Skip to main content
Log in

The wheat TaSAMS10 improves survival rate under waterlogging stress by inducing ethylene synthesis and early flowering

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Monson and irregular pluviometric distributions occur frequently, causing waterlogging, which reduces wheat yield under hypoxic conditions. Key hypoxia-related genes are of paramount importance for breeding waterlogging-tolerant wheat varieties. In this study, two spring wheat genotypes with different waterlogging tolerance levels were used to evaluate S-adenosylmethionine synthase family genes. Using wheat genome information, physicochemical properties of the SAMS gene family were analyzed using bioinformatics methods, and TaSAMS10 was chosen because of its positive waterlogging response. The TaSAMS10 gene was cloned into a binary vector then transformed into Arabidopsis plants, and the waterlogging response was recorded. The cis-acting elements in the promoter region of TaSAMS10 revealed the regulatory elements essential for anaerobic induction. Aerenchyma formation was detected in the tolerant genotype but not in the sensitive genotype of wheat. Whereas in TaSAMS10-overexpression Arabidopsis lines, old leaves and roots were exposed to ethylene accumulation, early flowering, and increased survival rates after 20 days of waterlogging treatment. Taken together, the two strategies “escape” and “tolerance” were combined by TaSAMS10 to resist waterlogging stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed F, Rafii M, Ismail MR, Juraimi AS, Rahim H, Asfaliza R, Latif MA (2013) Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects. Biomed Res Int 1:963525

    Google Scholar 

  • Basu S, Kumar G, Kumari N, Kumari S, Rajwanshi R (2020) Reactive oxygen species and reactive nitrogen species induce lysigenous aerenchyma formation through programmed cell death in rice roots under submergence. Environ Exp Bot 177:104118

    Article  CAS  Google Scholar 

  • Chen J, Zhong H, Ren J, Zhao W, Man Q, Shang S, Tang X (2019) Genome-wide analysis of the aquaporin gene family in reptiles. Int J Bio Macromol 126:1093–1098

    Article  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202

    Article  PubMed  CAS  Google Scholar 

  • Collaku A, Harrison S (2002) Losses in wheat due to waterlogging. Crop Sci 42(2):444–450

    Article  Google Scholar 

  • Coskun D, Britto DT, Jean YK, Schulze LM, Becker A, Kronzucker HJ (2012) Silver ions disrupt K+ homeostasis and cellular integrity in intact barley (Hordeum vulgare L.) roots. J Exp Bot 63(1):151–162

    Article  PubMed  CAS  Google Scholar 

  • Fontecave M, Atta M, Mulliez E (2004) S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci 29(5):243–249

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Bailey-Serres J (2008) Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. P Natl Acad Sci USA 105(43):16814–16819

    Article  ADS  CAS  Google Scholar 

  • Gomez-Jimenez MC, Paredes MA, Gallardo M, Fernandez-Garcia N, Olmos E, Sanchez-Calle IM (2010) Tissue-specific expression of olive S-adenosyl methionine decarboxylase and spermidine synthase genes and polyamine metabolism during flower opening and early fruit development. Planta 232(3):629–647

    Article  PubMed  CAS  Google Scholar 

  • Gong B, Li X, VandenLangenberg KM, Wen D, Sun S, Wei M, Li Y, Yang F, Shi Q, Wang X (2014) Overexpression of S-adenosyl‐l‐methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnol J 12(6):694–708

    Article  PubMed  CAS  Google Scholar 

  • Grote U, Fasse A, Nguyen TT, Erenstein O (2021) Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front Sustain Food Syst 4:617009

    Article  Google Scholar 

  • Gupta A, Rico-Medina A, Cano-Delgado AI (2020) The physiology of plant responses to drought. Science 368(6488):266–269

    Article  ADS  PubMed  CAS  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460(7258):1026–1030

    Article  ADS  PubMed  CAS  Google Scholar 

  • He MW, Wang Y, Wu JQ, Shu S, Sun J, Guo SR (2019) Isolation and characterization of S-Adenosylmethionine synthase gene from cucumber and responsive to abiotic stress. Plant Physiol Biochem 141:431–445

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217:109–119

    Article  PubMed  Google Scholar 

  • Kim SH, Kim SH, Palaniyandi SA, Yang SH, Suh JW (2015) Expression of potato S-adenosyl-L-methionine synthase (SbSAMS) gene altered developmental characteristics and stress responses in transgenic Arabidopsis plants. Plant Physiol Bioch 87:84–91

    Article  CAS  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228(3):367–381

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lethin J, Shakil SS, Hassan S, Sirijovski N, Töpel M, Olsson O, Aronsson H (2020) Development and characterization of an EMS-mutagenized wheat population and identification of salt-tolerant wheat lines. BMC Plant Biol 20(1):1–15

    Article  Google Scholar 

  • Li Z, Wang J, Zhang X, Zhu G, Fu Y, Jing Y, Huang B, Wang X, Meng C, Yang Q, Xu L (2022) The genome of Aechmea fasciata provides insights into the evolution of tank epiphytic habits and ethylene-induced flowering. Commun Biol 5(1):920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Licausi F, Van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P (2010) HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J 62(2):302–315

    Article  PubMed  CAS  Google Scholar 

  • Lindroth AM, Saarikoski P, Flygh G, Clapham D, Grönroos R, Thelander M, Ronne H, von Arnold S (2001) Two S-adenosylmethionine synthetase-encoding genes differentially expressed during adventitious root development in Pinus contorta. Plant Mol Biol 46(3):335–346

    Article  PubMed  CAS  Google Scholar 

  • Lozano R, Hamblin MT, Prochnik S, Jannink JL (2015) Identification and distribution of the NBS-LRR gene family in the cassava genome. BMC Genomics 16(1):1–14

    Article  CAS  Google Scholar 

  • Mao D, Yu F, Li J, Van de Poel B, Tan D, Li J, Liu Y, Li X, Dong M, Chen L, Li D, Luan S (2015) FERONIA receptor kinase interacts with S-adenosylmethionine synthetase and suppresses S-adenosylmethionine production and ethylene biosynthesis in Arabidopsis. Plant Cell Environ 38(12):2566–2574

    Article  PubMed  CAS  Google Scholar 

  • Müller M (2021) Foes or friends: ABA and ethylene interaction under abiotic stress. Plants 10(3):448

    Article  PubMed  PubMed Central  Google Scholar 

  • Musgrave M, Ding N (1998) Evaluating wheat cultivars for waterlogging tolerance. Crop Sci 38(1):90–97

    Article  Google Scholar 

  • Niroula RK, Pucciariello C, Ho VT, Novi G, Fukao T, Perata P (2012) SUB1A-dependent and‐independent mechanisms are involved in the flooding tolerance of wild rice species. Plant J 72(2):282–293

    Article  PubMed  CAS  Google Scholar 

  • Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K (2003) Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca 7000 full-length cDNA microarray. Plant J 34(6):868–887

    Article  PubMed  CAS  Google Scholar 

  • Pan R, He D, Xu L, Zhou M, Li C, Wu C, Xu Y, Zhang W (2019) Proteomic analysis reveals response of differential wheat (Triticum aestivum L.) genotypes to oxygen deficiency stress. BMC Genomics 20(1):1–13

    Article  Google Scholar 

  • Pan R, Xu Y, Xu L, Zhou M, Jiang W, Wang Q, Zhang W (2020) Methylation changes in response to hypoxic stress in wheat regulated by methyltransferases. Russ J Plant physl 67(2):323–333

    Article  CAS  Google Scholar 

  • Pan R, Buitrago S, Feng X, Hu A, Zhou M, Zhang W (2022) Ethylene regulates aerenchyma formation in cotton under hypoxia stress by inducing the accumulation of reactive oxygen species. Environ Exp Bot 197:104826

    Article  CAS  Google Scholar 

  • Pattyn J, Vaughan-Hirsch J, Van de Poel B (2021) The regulation of ethylene biosynthesis: a complex multilevel control circuitry. New Phytol 229(2):770–782

    Article  PubMed  CAS  Google Scholar 

  • Pena-Castro JM, van Zanten M, Lee SC, Patel MR, Voesenek LA, Fukao T, Bailey-Serres J (2011) Expression of rice SUB1A and SUB1C transcription factors in Arabidopsis uncovers flowering inhibition as a submergence tolerance mechanism. Plant J 67(3):434–446

    Article  PubMed  CAS  Google Scholar 

  • Quan J, Zhang S, Zhang C, Meng S, Zhao Z, Xu X (2014) Molecular cloning, characterization and expression analysis of the SAMS gene during adventitious root development in IBA-induced tetraploid black locust. PLoS ONE 9(10):e108709

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson SJ, Cory AT, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout CJ, Chalhoub B, Mayer KFX, Benhamed M, Latrasse D, Bendahmane A, Wulff BBH, Appels R, Tiwari V, Datla R, Choulet F, Pozniak CJ, Provart NJ, Sharpe AG, Paux E, Spannagl M, Bräutigam A, Uauy C (2018) The transcriptional landscape of polyploid wheat. Science 361(6403):662

    Article  Google Scholar 

  • Sanchez-Aguayo I, Rodriguez-Galán JM, García R, Torreblanca J, Pardo JM (2004) Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants. Planta 220(2):278–285

    Article  PubMed  CAS  Google Scholar 

  • Sauter M, Moffatt B, Saechao Maye C, Hell R, Wirtz M (2013) Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 451(2):145–154

    Article  PubMed  CAS  Google Scholar 

  • Sekula B, Ruszkowski M, Dauter Z (2020) S-adenosylmethionine synthases in plants: structural characterization of type I and II isoenzymes from Arabidopsis thaliana and Medicago truncatula. Int J Biol Macromol 151:554–565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seong E, Jeon M, Choi J, Yoo J, Lee J, Na J, Kim N, Yu C (2020) Overexpression of S-adenosylmethionine synthetase enhances tolerance to cold stress in tobacco. Russ J Plant Physiol 67(2):242–249

    Article  CAS  Google Scholar 

  • Shen B, Li C, Tarczynski MC (2002) High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S‐adenosyl‐L‐methionine synthetase 3 gene. Plant J 29(3):371–380

    Article  PubMed  CAS  Google Scholar 

  • Trusov Y, Botella JR (2006) Silencing of the ACC synthase gene AcACS2 causes delayed flowering in pineapple [Ananas comosus (L.) Merr]. J Exp Bot 57(14):3953–3960

    Article  PubMed  CAS  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26(11):1917–1926

    Article  CAS  Google Scholar 

  • Van de Poel B, Bulens I, Oppermann Y, Hertog ML, Nicolai BM, Sauter M, Geeraerd AH (2013) S-adenosyl‐l‐methionine usage during climacteric ripening of tomato in relation to ethylene and polyamine biosynthesis and transmethylation capacity. Physiol Plant 148(2):176–188

    Article  PubMed  Google Scholar 

  • Wang J, Li Z, Lei M, Fu Y, Zhao J, Ao M, Xu L (2017) Integrated DNA methylome and transcriptome analysis reveals the ethylene-induced flowering pathway genes in pineapple. Sci Rep 7(1):17167

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Wi SJ, Kim WT, Park KY (2006) Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep 25(10):1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442(7103):705–708

    Article  ADS  PubMed  CAS  Google Scholar 

  • Xu L, Zhao C, Pang J, Niu Y, Liu H, Zhang W, Zhou M (2022) Genome-wide association study reveals quantitative trait loci for waterlogging-triggered adventitious roots and aerenchyma formation in common wheat. Front Plant Sci 13:1066752

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang C, Lu X, Ma B, Chen SY, Zhang JS (2015) Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects. Mol Plant 8(4):495–505

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Bao Z, Gong B, Shi Q (2020) S-adenosylmethionine synthetase 1 confers drought and salt tolerance in transgenic tomato. Environ Exp Bot 179:104226

    Article  CAS  Google Scholar 

  • Zhang H, Zhu J, Gong Z, Zhu JK (2022) Abiotic stress responses in plants. Nat Rev Genet 23(2):104–119

    Article  PubMed  Google Scholar 

  • Zhou W, Chen F, Meng Y, Chandrasekaran U, Luo X, Yang W, Shu K (2020) Plant waterlogging/flooding stress responses: from seed germination to maturation. Plant Physiol Bioch 148:228–236

    Article  CAS  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu M, Shabala L, Cuin TA, Huang X, Zhou M, Munns R, Shabala S (2016) Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat. J Exp Bot 67(3):835–844

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Rong Zeng and Adeel Riaz for revising the manuscript, and Haowen Chang for helping in the experiments.

Funding

This project is funded by Hubei Key Research and Development Program, China (2021BBA225).

Author information

Authors and Affiliations

Authors

Contributions

BC: data curation, investigation, resources, writing—original draft, writing—review and editing. XF: data curation, investigation, resources, writing—original draft. SB: writing—review and editing. KW: data curation. YX: writing—review & editing. LX: writing—review and editing. RP: conceptualization, data curation, investigation, writing—original draft, writing—review and editing, funding acquisition. WZ: conceptualization, data curation, investigation, writing—review and editing, funding acquisition.

Corresponding author

Correspondence to Rui Pan.

Ethics declarations

Conflict of interest

The authors have declared that no competing inter-ests exist.

Additional information

Communicated by Jiayin Pang.

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PNG 110 kb)

Supplementary material 2 (XLSX 16 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, B., Feng, X., Buitrago, S. et al. The wheat TaSAMS10 improves survival rate under waterlogging stress by inducing ethylene synthesis and early flowering. Plant Growth Regul 102, 379–393 (2024). https://doi.org/10.1007/s10725-023-01067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-023-01067-0

Keywords

Navigation