Skip to main content
Log in

Identification and functional characterization of circular RNAs in response to blue light induction in Saccharina japonica

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Blue light is one of the important factors that influences Saccharina japonica growth and development. Circular RNAs (circRNAs) are a class of abundant endogenous stable RNAs that play vital roles in many biological activities. To explore the blue light-mediated regulation of circRNAs, the transcript profiles of circRNAs in response to blue light (RB), white light (RW) and dark (RD) were characterized in the sporophytes of S. japonica using rRNA-depleted circular RNA sequencing and bioinformatics analysis. In total, 1768 circRNAs were identified in sporophytes, and 969 (54.81%) were derived from exons. Enrichment analysis showed that the parental genes of S. japonica circRNAs were involved in spliceosome, RNA transport, protein processing in the endoplasmic reticulum and endocytosis pathways. In total, 37 and 14 differentially expressed circRNAs were identified in the RB vs. RD and RB vs. RW comparisons, respectively. The sja-circ-000945, sja-circ-000944, sja-circ-000486 and sja-circ-000518 were differentially expressed in both the RB vs. RD and RB vs. RW comparisons, which indicating that they may play vital roles in blue light-mediated signal transduction. Based on the circRNA-microRNA-mRNA network analysis, sja-circ-000518 and sja-circ-000486 were related to sporophyte growth and development. In addition, sja-circ-000518 was involved in signal transduction by competing for binding sites in novel-m3940-3p with both CBL-interacting protein kinase 31 and phosphatidylinositol 4-phosphate 5-kinase. In conclusion, circRNAs may function as posttranscriptional regulators in blue light-mediated growth and development of S. japonica. Our study provides an understanding of the regulation of circRNAs from the perspective of circRNA-related competitive endogenous RNAs in the brown macroalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CIPK31:

CBL-interacting protein kinase 31

DAVID:

Database for annotation, visualization and integrated discovery

PIP5K:

Phosphatidylinositol 4-phosphate 5-kinase

qRT-PCR:

Quantitative real-time PCR

lncRNA:

Long non-coding RNA

microRNA:

MiRNA

RB:

Blue light

RD:

Dark

RW:

White light

References

  • Bhogireddy S, Mangrauthia SK, Kumar R, Pandey AK, Singh S, Jain A, Budak H, Varshney RK, Kudapa H (2021) Regulatory non-coding RNAs: a new frontier in regulation of plant biology. Funct Integr Genomics 21(3–4):313–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Wang T, Gong ZY, Lu H, Chen Y, Deng F, Ren WJ (2022) Low light conditions alter genome-wide profiles of circular RNAs in rice grains during grain filling. Plants-Basel 11(9):1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu QJ, Ding YW, Xu XX, Ye CY, Zhu QH, Guo LB, Fan LJ (2022) Recent origination of circular RNAs in plants. New Phytol 233(1):515–525

    Article  CAS  PubMed  Google Scholar 

  • Deng YY, Yao JT, Wang XL, Guo H, Duan DL (2012) Transcriptome sequencing and comparative analysis of Saccharina japonica (Laminariales, Phaeophyceae) under blue light induction. PLoS ONE 7(6):e39704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dring MJ (1981) Chromatic adaptation of photosynthesis in benthic marine algae: an examination of its ecological significance using a theoretical mode. Limnol Oceanogr 26:271–284

    Article  Google Scholar 

  • Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Li J, Luo M, Li H, Chen QJ, Wang L, Song SR, Zhao LP, Xu WP, Zhang CX, Wang SP, Ma C (2019) Characterization and cloning of grape circular RNAs identified the cold resistance-related Vv-circATS1. Plant Physiol 180(2):966–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  • Hou KY, Lou SL, Zeng ZY, Hu ZL, Hui L (2020) Prediction and identification of sulfur-responding circular RNA in Chlamydomonas reinhardtii. Shenzhen Daxue Xuebao (ligong Ban) 37(3):221–223

    Google Scholar 

  • Huang XP, Zhang HY, Guo R, Wang Q, Liu XZ, Kuang WG, Song HY, Liao JL, Huang YJ, Wang ZH (2021) Systematic identification and characterization of circular RNAs involved in flag leaf senescence of rice. Planta 253(2):26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov A, Mattei D, Radscheit K, Compagnion AC, Pett JP, Herzel H, Paolicelli RC, Piwecka M, Meyer U, Beule D (2022) Analyses of circRNA expression throughout the light-dark cycle reveal a strong regulation of Cdr1as, associated with light entrainment in the SCN. Int J Mol Sci 23(20):12347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao J, Duan CJ, Zheng J, Li DY, Li C, Wang ZY, Gao T, Xiang Y (2021) Development of a two-in-one integrated assay for the analysis of circRNA-microRNA interactions. Biosens Bioelectron 178:113032

    Article  CAS  PubMed  Google Scholar 

  • Lai XL, Bazin J, Webb S, Crespi M, Zubieta C, Conn SJ (2018) CircRNAs in plants. Adv Exp Med Biol 1087:329–343

    Article  CAS  PubMed  Google Scholar 

  • Li QF, Zhang YC, Chen YQ, Yu Y (2017) Circular RNAs roll into the regulatory network of plants. Biochem Biophys Res Commun 488(2):382–386

    Article  CAS  PubMed  Google Scholar 

  • Liu FL, Wang WJ, Sun XT, Liang ZR, Wang FJ (2015) Conserved and novel heat stress-responsive microRNAs were identified by deep sequencing in Saccharina japonica (Laminariales, Phaeophyta). Plant Cell Environ 38(7):1357–1367

    Article  CAS  PubMed  Google Scholar 

  • Liu TF, Zhang L, Chen G, Shi TL (2017) Identifying and characterizing the circular RNAs during the lifespan of Arabidopsis leaves. Front Plant Sci 8:1278

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu RQ, Ma Y, Guo T, Li GL (2022) Identification, biogenesis, function, and mechanism of action of circular RNAs in plants. Plant Commun 7:100430

    Google Scholar 

  • Lu TT, Cui LL, Zhou Y, Zhu CR, Fan DL, Gong H, Zhao Q, Zhou CC, Zhao Y, Lu DF, Luo JH, Wang YC, Tian QL, Feng Q, Huang T, Han B (2015) Transcriptome-wide investigation of circular RNAs in rice. RNA 21(12):2076–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lüning K, Dring MJ (1972) Reproduction induced by blue light in female gametophytes of Laminaria saccharina. Planta 104(3):252–256

    Article  PubMed  Google Scholar 

  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    Article  CAS  PubMed  Google Scholar 

  • Meng XW, Hu DH, Zhang PJ, Chen Q, Chen M (2019) CircFunBase: a database for functional circular RNAs. Database (oxford) 2019:baz003

    Article  PubMed  Google Scholar 

  • Mizuta H, Kai T, Tabuchi K, Yasui H (2007) Effects of light quality on the reproduction and morphology of sporophytes of Laminaria japonica (Phaeophyceae). Aquac Res 38:1323–1329

    Article  Google Scholar 

  • Pan T, Sun XQ, Liu YX, Li H, Deng GB, Lin HH, Wang SH (2018) Heat stress alters genome-wide profiles of circular RNAs in Arabidopsis. Plant Mol Biol 96(3):217–229

    Article  CAS  PubMed  Google Scholar 

  • Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, Parast MM, Murry CE, Laurent LC, Salzman J (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16(1):126

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi CJ, Kataoka H, Duan DL (2005) Effects of blue light on gametophyte development of Laminaria japonica (Laminariales, Phaeophyta). Chin J Oceanol Limnol 23(3):323–329

    Article  Google Scholar 

  • Sun XY, Wang L, Ding JC, Wang YR, Wang JS, Zhang XY, Che YL, Liu ZW, Zhang XR, Ye JZ, Wang J, Sablok G, Deng ZP, Zhao HW (2016) Integrative analysis of Arabidopsis thaliana transcriptomics reveals intuitive splicing mechanism for circular RNA. FEBS Lett 590(20):3510–3516

    Article  CAS  PubMed  Google Scholar 

  • Tan JJ, Zhou ZJ, Niu YJ, Sun XY, Deng ZP (2017) Identification and functional characterization of tomato circRNAs derived from genes involved in fruit pigment accumulation. Sci Rep 7(1):8594

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong W, Yu J, Hou Y, Li FD, Zhou QY, Wei CL, Bennetzen JL (2018) Circular RNA architecture and differentiation during leaf bud to young leaf development in tea (Camellia sinensis). Planta 248(6):1417–1429

    Article  CAS  PubMed  Google Scholar 

  • Wang WJ, Sun XT, Wang FJ (2010a) Effect of blue light on early sporophyte development of Saccharina japonica (Phaeophyta). Mar Biol 157(8):1811–1817

    Article  Google Scholar 

  • Wang WJ, Sun XT, Wang GC, Pu X, Wang XY, Lin ZL, Wang FJ (2010b) Effect of blue light on indoor seedling culture of Saccharina japonica (Phaeophyta). J Appl Phycol 22(6):737–744

    Article  Google Scholar 

  • Wang WJ, Wang FJ, Sun XT, Liu FL, Liang ZR (2013) Comparison of transcriptome under red and blue light culture of Saccharina japonica (Phaeophyceae). Planta 237(4):1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Wang YX, Yang M, Wei SM, Qin FJ, Zhao HJ, Suo B (2017) Identification of circular RNAs and their targets in leaves of Triticum aestivum L. under dehydration stress. Front Plant Sci 7:2024

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang XS, Chang XC, Jing Y, Zhao JL, Fang QW, Sun MY, Zhang YZ, Li WB, Li YG (2020) Identification and functional prediction of soybean CircRNAs involved in low-temperature responses. J Plant Physiol 250:153188

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Guo ZY, Zi C, Wu PF, Lv XY, Chen L, Chen FX, Zhang GX, Wang JY (2022) CircRNA expression in chicken granulosa cells illuminated with red light. Poult Sci 101(4):101734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu ZH, Huang W, Qin ED, Liu S, Liu H, Grennan AK, Liu H, Qin R (2020) Comprehensive identification and expression profiling of circular RNAs during nodule development in Phaseolus vulgaris. Front Plant Sci 11:587185

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang XQ, Li L, Wang XL, Yao JT, Duan DL (2020a) Non-coding RNAs participate in the regulation of CRY-DASH in the growth and early development of Saccharina japonica (Laminariales, Phaeophyceae). Int J Mol Sci 21(1):309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZC, Yang Z, Xie YG, Liu Q, Mei YH, Wu YJ (2020b) Systematic identification and analysis of light-responsive circular RNA and co-expression networks in lettuce (Lactuca sativa). G3 Bethesda 10(7):2397–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XQ, Wang XL, Yao JT, Li W, Duan DL (2021) MiR8181 is involved in the cell growth regulation of Saccharina japonica. J Plant Physiol 260:153394

    Article  CAS  PubMed  Google Scholar 

  • Ye CY, Zhang XC, Chu QJ, Liu C, Yu YY, Jiang WQ, Zhu QH, Fan LJ, Guo LB (2017) Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice. RNA Biol 14(8):1055–1063

    Article  PubMed  Google Scholar 

  • Zhang P, Dai MQ (2022) CircRNA: a rising star in plant biology. J Genet Genomics 27:S1673-8527(22)00155–2. https://doi.org/10.1016/j.jgg.2022.05.004

    Article  Google Scholar 

  • Zhang P, Fan Y, Sun XP, Chen L, Terzaghi W, Bucher E, Li L, Dai MQ (2019) A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. Plant J 98(4):697–713

    Article  CAS  PubMed  Google Scholar 

  • Zhang JJ, Liu RQ, Zhu YF, Gong JX, Yin SW, Sun PS, Feng H, Wang Q, Zhao SJ, Wang ZY, Li GL (2020a) Identification and characterization of circRNAs responsive to methyl jasmonate in Arabidopsis thaliana. Int J Mol Sci 21(3):792

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang PJ, Li SD, Chen M (2020b) Characterization and function of circular RNAs in plants. Front Mol Biosci 7:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZY, Wang HH, Wang YS, Xi FH, Wang HY, Kohnen MV, Gao PF, Wei WT, Chen K, Liu XQ, Gao YB, Han XM, Hu KQ, Zhang HX, Zhu Q, Zheng YS, Liu B, Ahmad A, Hsu YH, Jacobsen SE, Gu LF (2021) Whole-genome characterization of chronological age-associated changes in methylome and circular RNAs in moso bamboo (Phyllostachys edulis) from vegetative to floral growth. Plant J 106(2):435–453

    Article  CAS  PubMed  Google Scholar 

  • Zhu YX, Jia JH, Yang L, Xia YC, Zhang HL, Jia JB, Zhou R, Nie PY, Yin JL, Ma DF, Liu LC (2019) Identification of cucumber circular RNAs responsive to salt stress. BMC Plant Biol 19(1):164

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by Joint Research Project Between China and Japan, grant number 2017YFE0130900, National Natural Science Foundation of China, grant number 31772848, and China Postdoctoral Science Foundation, grant number 2022M713183.

Author information

Authors and Affiliations

Authors

Contributions

Methodology: XY; Validation: XY; formal analysis: XY; writing—original draft preparation: XY, XW, JY, DD, writing—review and editing: DD; funding acquisition: XW; DD.

Corresponding author

Correspondence to Delin Duan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Hong-Xia Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2537 kb)

Supplementary file2 (DOCX 285 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wang, X., Yao, J. et al. Identification and functional characterization of circular RNAs in response to blue light induction in Saccharina japonica. Plant Growth Regul 100, 161–170 (2023). https://doi.org/10.1007/s10725-022-00947-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-022-00947-1

Keywords

Navigation