Skip to main content
Log in

Setaria italica SiWRKY89 enhances drought tolerance in Arabidopsis

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Foxtail millet (Setaria italica), a drought-tolerant plant, is grown in drylands all over the world. However, the molecular basis of drought tolerance in S. italica is not yet understood. Previously, we comprehensively characterised the SiWRKY genes and discovered that SiWRKY89, a homologue of AtWRKY57, had a noticeably higher expression level during dry conditions. In this study, a transgenic experiment was carried out in Arabidopsis to investigate the function of SiWRKY89 in conferring drought tolerance. Phenotypic analysis showed that the root length of seedlings and the survival rates of mature transgenic Arabidopsis were greater than those of the control plants under drought conditions. Additionally, compared to the control plants, the transgenic plants had higher proline content and antioxidant activity. Furthermore, qRT-PCR investigation for abiotic stress-responsive genes revealed that SiWRKY89-overexpressing plants had higher expression levels than their control counterparts. Additionally, the yeast one-hybrid experiment demonstrated that SiWRKY89 could bind to the W-box elements of AtNCED3. By upregulating the downstream gene AtNCED3 and activating the reactive oxygen species scavenging mechanisms, SiWRKY89 overexpression improved Arabidopsis drought tolerance. Thus, we provide a molecular and biochemical basis for drought tolerance and a candidate gene for crop breeding for drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  • Bencke-Malato M, Cabreira C, Wiebke-Strohm B, Bücker-Neto L, Mancini E, Osorio MB, Homrich MS, Turchetto-Zolet AC, De Carvalho MC, Stolf R, Weber RL, Westergaard G, Castagnaro AP, Abdelnoor RV, Marcelino-Guimarães FC, Margis-Pinheiro M, Bodanese-Zanettini MH (2014) Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection. BMC Plant Biol 14:236

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceasar SA (2022) Foxtail millet (Setaria italica) as a model system to study and improve the nutrient transport in cereals. Plant Growth Regul. https://doi.org/10.1007/s10725-022-00878-x

    Article  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819:120–128

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • GuoY HD, Wang X, Wang H, Wu Z, Yang P, Zhang B (2022) Comparative transcriptomics reveals key genes contributing to the differences in drought tolerance among three cultivars of foxtail millet (Setaria italica). Plant Growth Regul. https://doi.org/10.1007/s10725-022-00875-0

    Article  Google Scholar 

  • Gupta A, Rico-Medina A, Caño-Delgado AI (2020) The physiology of plant responses to drought. Science 368:266–269

    Article  CAS  PubMed  Google Scholar 

  • He G, Xu J, Wang Y, Liu J, Li P, Chen M, Ma Y, Xu Z (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang X, Wang W, Zhang Q, Liu J (2014) A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol 162:1178–1194

    Article  Google Scholar 

  • Huang H, Farhan U, Zhou D, Yi M, Zhao Y (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800

    Article  PubMed  PubMed Central  Google Scholar 

  • IPCC Climate Change Synthesis Report Contribution of Working Groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva. 151 2014

  • Jiang YJ, Liang G, Yu DQ (2012) Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 5:1375–1388

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Qiu Y, Hu Y, Yu D (2016) Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa. Front Plant Sci 7:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Kavi Kishor PB, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37:300–311

    Article  CAS  PubMed  Google Scholar 

  • Kiranmai K, Lokanadha Rao G, Pandurangaiah M, Nareshkumar A, Amaranatha Reddy V, Lokesh U, Venkatesh B, Anthony Johnson AM, Sudhakar C (2018) A novel WRKY transcription factor, MuWRKY3 (Macrotyloma uniflorum Lam Verdc.) enhances drought stress tolerance in transgenic groundnut (Arachis hypogaea L.) plants. Front Plant Sci 9:346

    Article  PubMed  PubMed Central  Google Scholar 

  • Lata C, Sahu PP, Prasad M (2010) Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress. Biochem Biophys Res Commun 393:720–727

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Bai X, Sun X, Zhu D, Liu B, Ji W, Cai H, Cao L, Wu J, Hu M, Liu X, Tang L, Zhu Y (2013) Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. J Exp Bot 64:2155–2169

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Ma B, Lin Q, Zhang ZB, Zhang JS, Chen SY (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35:1156–1170

    Article  CAS  PubMed  Google Scholar 

  • Okay S, Derelli E, Unver T (2014) Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress. Mol Genet Genomics 289:765–781

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Li Z, Wang Q (2018) Comparative proteomic investigation of drought responses in foxtail millet. BMC Plant Biol 18(1):315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qie L, Jia G, Zhang W, Schnable J, Shang Z, Li W, Liu B, Li M, Chai Y, Zhi H, Diao X (2014) Mapping of quantitative trait locus (QTLs) that contribute to germination and early seedling drought tolerance in the interspecific cross Setaria italica×Setaria viridis. PLoS ONE 9:e101868

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin L, Chen E, Li F, Yu X, Liu Z, Yang Y, Wang R, Zhang H, Wang H, Liu B, Guan Y, Ruan Y (2020) Genome-wide gene expression profiles analysis reveal novel insights into drought stress in foxtail millet (Setaria italica L.). Int J Mol Sci 21:8520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabara RC, Tripathi P, Rushton PJ (2014) The potential of transcription factor-based genetic engineering in improving crop tolerance to drought. OMICS 18:601–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, Hong X, Zhu JK, Gong Z (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63:417–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Sarvajeet S, Narendra Tu (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  Google Scholar 

  • Tang S, Li L, Wang Y, Chen Q, Zhang W, Jia G, Zhi H, Zhao B, Diao X (2017) Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses). Sci Rep 7:10009

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S (2011) OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot 62:4863–4874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas E, Paul J, Silke R, Imre E (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5(5):199–206

  • Tom H, Ibis B, Carlsbad Ca (2011) BioEdit: an important software for molecular biology. GERF Bull Biosci 2(1):60–61

    Google Scholar 

  • Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  Google Scholar 

  • Wang H, Hao D, Wang X, Zhang H, Yang P, Zhang L, Zhang B (2021) Genome-wide identification and expression analysis of the SNARE genes in Foxtail millet (Setaria italica) reveals its roles in drought stress. Plant Growth Regul 95:355–369

    Article  CAS  Google Scholar 

  • Woo D, Park H, Kang I, Lee S, Moon B, Lee C, Moon Y (2011) Arabidopsis lenc1 mutant displays reduced ABA accumulation by low AtNCED3 expression under osmotic stress. J Plant Physiol 168:140–147

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137:176–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Wang M, Shi D, Zhou G, Niu T, Hahn G, O’Neill M (2017) DGE-seq analysis of MUR3-related Arabidopsis mutants provides insight into how dysfunctional xyloglucan affects cell elongation. Plant Sci 258:156–169

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Marowa P, Liu H, Du H, Zhang C, Li Y (2020) Genome-wide identification and analysis of P-type plasma membrane H+-ATPase sub-gene family in sunflower and the role of HHA4 and HHA11 in the development of salt stress resistance. Genes 11:361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Chi X, Guo F, Jin X, Luo H, Hawar A, Chen Y, Feng K, Wang B, Qi J, Yang Y, Sun B (2020) SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. J Plant Physiol 246–247:153142

    Article  PubMed  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162:2–12

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Zhi H, Liu B, Peng H, Li W, Wang Y, Li H, Li Y, Diao X (2010) Indexes screening for drought resistance test of foxtail millet. J Plant Genet Resour 11:560–565

    Google Scholar 

  • Zhang L, Shu H, Zhang AY, Liu BL, Xing GF, Xue JA, Yuan LX, Gao CY, Li RZ (2017) Foxtail millet WRKY genes and drought stress. J Agric Sci 155:777–790

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program (2020YFD1000803-2); State Key Laboratory of Sustainable Dryland Agriculture (202105D121008-2-5); the Natural Science Foundation of China (NSFC) (31860409; 32060509); Natural Science Foundation of Shanxi Province (201901D111221); Key Research and Development Program of Shanxi Province (201803D221019-1); Research Program Sponsored by Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University (202105D121010-06); Demonstration and Guidance Program for Technology People-Benefit in Qingdao (20-3-4-7-nsh), and the Agricultural Science and Technology Innovation Program (ASTIP No. CAAS-ZDRW202201).

Funding

The State Key Laboratory of Sustainable Dryland Agriculture, 202105D121008-2-5, Li Zhang, Natural Science Foundation of Jilin Province,31860409, Li Zhang,32060509, Li Zhang, Key Technologies Research and Development Program,2020YFD1000803-2, AiYing Zhang, Natural Science Foundation of Shanxi Province, 201901D111221, Li Zhang

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongchang Xu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Communicated by Zhen Liang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Zhang, L., Guo, E. et al. Setaria italica SiWRKY89 enhances drought tolerance in Arabidopsis. Plant Growth Regul 99, 125–135 (2023). https://doi.org/10.1007/s10725-022-00916-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-022-00916-8

Keywords

Navigation