Skip to main content
Log in

Lobularia maritima thioredoxin-h2 gene mitigates salt and osmotic stress damage in tobacco by modeling plant antioxidant system

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Thioredoxins (Trxs) are multi-functional redox proteins characterized by a conserved redox-active CGPC site. In plants, Trxs are small antioxidant proteins encoded by a multigene family and regulate several processes during development and growth. Consequently, Thrxs are attractive candidates for transgenic plant improvement to overcome the abnormal plant growth and development observed during abiotic stress conditions. Here, we isolated the gene encoding the h-type Trx protein, LmTrxh2, from the halophyte plant Lobularia maritima and developed transgenic tobacco plants that overexpress LmTrxh2. Based on an in silico sequential, phylogenetic, and three-dimensional model analysis, LmTrxh2 protein shares high sequence identity and common structural characteristics with plant thioredoxins. RT-qPCR analysis revealed differential temporal and spatial regulation of LmTrxh2 in L. maritima exposed to salt (150 mM NaCl), osmotic (10% PEG 8000), and oxidative (10 µM H2O2) stresses. Subcellular localization using confocal microscopy revealed that LmTrxh2 localized to the plasma membrane. Transgenic LmTrxh2 tobacco lines exhibited improved salt and osmotic stress tolerance compared to non-transgenic (NT) plants, and this tolerance was associated with mitigation of oxidative damage. Finally, four stress-related genes were upregulated in LmTrxh2 transgenic tobacco plants compared to those in NT plants under control and stress conditions. These findings suggest that LmTrxh2 is an attractive candidate gene for the genetic engineering of crops with enhanced salt and osmotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data is available in the manuscript and its supplementary files.

References

  • Aebi H (1984) Catalase in vitro. Methods in enzymology, vol 105. Academic Press, New York, pp 121–126

    Google Scholar 

  • Belin C, Bashandy T, Cela J, Delorme-Hinoux V, Riondet C, Reichheld JP (2015) A comprehensive study of thiol reduction gene expression under stress conditions in Arabidopsis thaliana. Plant Cell Environ 38(2):299–314

    CAS  PubMed  Google Scholar 

  • Ben Hsouna A, Dhibi S, Dhifi W, Ben Saad R, Brini F, Hfaidh N, Mnif W (2019) Essential oil from halophyte Lobularia maritima: protective effects against CCl 4-induced hepatic oxidative damage in rats and inhibition of the production of proinflammatory gene expression by lipopolysaccharide-stimulated RAW 264.7 macrophages. RSC Adv 9(63):36758–36770

    Google Scholar 

  • Ben Hsouna A, Dhibi S, Dhifi W, Ben Saad R, Brini F, Hfaidh N, Almeida J, Mnif W (2020) Lobularia maritima leave extract, a nutraceutical agent with antioxidant activity, protects against CCl4-induced liver injury in mice. Drug Chem Toxicol 1:1–14

    Google Scholar 

  • Ben Hsouna A, Ghneim-Herrera T, Ben Romdhane W, Dabbous A, Ben Saad R, Brini F, Abdelly C, Ben Hamed K (2020b) Early effects of salt stress on the physiological and oxidative status of the halophyte Lobularia maritima. Funct Plant Biol 47(10):912–924

    CAS  PubMed  Google Scholar 

  • Ben Romdhane W, Ben-Saad R, Meynard D, Verdeil JL, Azaza J, Zouari N, Fki L, Guiderdoni E, Al-Doss A, Hassairi A (2017) Ectopic expression of Aeluropus littoralis plasma membrane protein gene AlTMP1 confers abiotic stress tolerance in transgenic tobacco by improving water status and cation homeostasis. Int J Mol Sci 18(4):692

    PubMed Central  Google Scholar 

  • Ben Saad R, Ben Ramdhan W, Zouari N, Azaza J, Mieulet D, Guiderdoni E, Ellouz R, Hassairi A (2012) Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses. Mol Breed 30(1):521–533

    CAS  Google Scholar 

  • Ben Saad R, Ben Hsouna A, Saibi W, Ben Hamed K, Brini F, Ghneim-Herrera T (2018a) A stress-associated protein, LmSAP, from the halophyte Lobularia maritima provides tolerance to heavy metals in tobacco through increased ROS scavenging and metal detoxification processes. J Plant Physiol 231:234–243

    Google Scholar 

  • Ben Saad R, Farhat-Khemekhem A, Ben Halima N, Ben Hamed K, Brini F, Saibi W (2018b) The LmSAP gene isolated from the halotolerant Lobularia maritima improves salt and ionic tolerance in transgenic tobacco lines. Funct Plant Biol 45(3):378–391

    CAS  PubMed  Google Scholar 

  • Boubakri H, Saidi MN, Barhoumi F, Kamoun H, Jebara M, Brini F (2019) Identification and characterization of thioredoxin H-type gene family in Triticum turgidum ssp. durum in response to natural and environmental factor-induced oxidative stress. Plant Mol Biol Rep 37(5–6):464–476. https://doi.org/10.1007/s11105-019-01176-z

    Article  CAS  Google Scholar 

  • Chen IH, Chen HT, Huang YP, Huang HC, Shenkwen LL, Hsu YH, Tsai CH (2018) A thioredoxin NbTRXh2 from Nicotiana benthamiana negatively regulates the movement of Bamboo mosaic virus. Mol Plant Pathol 19(2):405–417

    CAS  PubMed  Google Scholar 

  • Cheong MS, Kim S, Yun D-J (2016) Biological function of nonxpressor of pathogenesis-related genes 1 (NPR1) in response to biotic and abiotic stresses. J Plant Biotechnol 43(3):281–292

    Google Scholar 

  • Chibani K, Wingsle G, Jacquot JP, Gelhaye E, Rouhier N (2009) Comparative genomic study of the thioredoxin family in photosynthetic organisms with emphasis on Populus trichocarpa. Mol Plant 2(2):308–322

    CAS  PubMed  Google Scholar 

  • Chu X, Wang C, Chen X, Lu W, Li H, Wang X, Hao L, Guo X (2015) The Cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS ONE 10(11):e0143022

    PubMed  PubMed Central  Google Scholar 

  • Collet JF, Messens J (2010) Structure, function, and mechanism of thioredoxin proteins. Antioxid Redox Signal 13(8):1205–1216

    CAS  PubMed  Google Scholar 

  • Colville L, Kranner I (2010) Desiccation tolerant plants as model systems to study redox regulation of protein thiols. Plant Growth Regul 62(3):241–255

    CAS  Google Scholar 

  • Considine MJ, Foyer CH (2014) Redox regulation of plant development. Antioxid Redox Signal 21(9):1305–1326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Da Fonseca-Pereira P, Daloso DM, Gago J, Nunes-Nesi A, AraWL (2019) On the role of the plant mitochondrial thioredoxin system during abiotic stress. Plant Signal Behav 14(6):1592536

    PubMed  PubMed Central  Google Scholar 

  • Eklund H, Gleason FK, Holmgren A (1991) Structural and functional relations among thioredoxins of different species. Proteins 11(1):13–28

    CAS  PubMed  Google Scholar 

  • Elasad M, Wei HL, Wang HT, Su JJ, Ondati E, Yu SX (2018) Genome- wide analysis and characterization of the TRX gene family in upland Cotton. Trop Plant Biol 11(3–4):119–130

    CAS  Google Scholar 

  • Elasad M, Ahmad A, Wang H, Ma L, Yu S, Wei H (2020) Overexpression of CDSP32 (GhTRX134) Cotton gene enhances drought, salt, and oxidative stress tolerance in Arabidopsis. Plants (Basel) 9(10):1388

    CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Jacquot JP (2003) Evidence for a subgroup of thioredoxin h that requires GSH/Grx for its reduction. Febs Lett 555(3):443–448

    CAS  PubMed  Google Scholar 

  • Gelhaye E, Rouhier N, Jacquot JP (2004) The thioredoxin h system of higher plants. Plant Physiol Biochem 42(4):265–271

    CAS  PubMed  Google Scholar 

  • Haak DC, Fukao T, Grene R, Hua Z, Ivanov R, Perrella G, Li S (2017) Multilevel regulation of abiotic stress responses in plants. Front Plant Sci 8:1564

    PubMed  PubMed Central  Google Scholar 

  • Harbaoui M, Ben Romdhane W, Ben Hsouna A, Brini F, Ben Saad R (2021) The durum wheat annexin, TdAnn6, improves salt and osmotic stress tolerance in Arabidopsis via modulation of antioxidant machinery. Protoplasma. https://doi.org/10.1007/s00709-021-01622-4

    Article  PubMed  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy Based on separation of Vir-region and T-region of the Agrobacterium-Tumefaciens Ti-Plasmid. Nature 303(5913):179–180

    CAS  Google Scholar 

  • Horsch RB, Fry J, Hoffmann N, Neidermeyer J, Rogers SG, Fraley RT (1988) Leaf disc transformation. Plant Mol Biol Manual. https://doi.org/10.1007/978-94-017-5294-7_5

    Article  Google Scholar 

  • Ji MG, Park HJ, Cha JY, Kim JA, Shin GI, Jeong SY, Lee ES, Yun DJ, Lee SY, Kim WY (2020) Expression of Arabidopsis thaliana Thioredoxin-h2 in Brassica napus enhances antioxidant defenses and improves salt tolerance. Plant Physiol Biochem 147:313–321

    CAS  PubMed  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287–291

    CAS  PubMed  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kneeshaw S, Gelineau S, Tada Y, Loake GJ, Spoel SH (2014) Selective protein denitrosylation activity of Thioredoxin-h5 modulates plant Immunity. Mol Cell 56(1):153–162

    CAS  PubMed  Google Scholar 

  • Laloi C, Mestres-Ortega D, Marco Y, Meyer Y, Reichheld JP (2004) The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol 134(3):1006–1016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lemaire SD, Guillon B, Le Marechal P, Keryer E, Miginiac-Maslow M, Decottignies P (2004) New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 101(19):7475–7480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li QY, Niu HB, Yin J, Shao HB, Niu JS, Ren JP, Li YC, Wang X (2010) Transgenic barley with overexpressed PTrx increases aluminum resistance in roots during germination. J Zhejiang Univ Sci B 11(11):862–870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  • Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87

    CAS  PubMed  Google Scholar 

  • Maehly AC, Chance B (1954) The assay of catalases and peroxidases. Methods Biochem Anal 1:357–424

    CAS  PubMed  Google Scholar 

  • Mata-Perez C, Spoel SH (2019) Thioredoxin-mediated redox signalling in plant immunity. Plant Sci 279:27–33

    CAS  PubMed  Google Scholar 

  • Meng L, Wong JH, Feldman LJ, Lemaux PG, Buchanan BB (2010) A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication. Proc Natl Acad Sci USA 107:3900–3905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer AJ, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86(3):435–457

    CAS  PubMed  Google Scholar 

  • Meyer Y, Siala W, Bashandy T, Riondet C, Vignols F, Reichheld JP (2008) Glutaredoxins and thioredoxins in plants. Biochim Biophys Acta 1783(4):589–600

    CAS  PubMed  Google Scholar 

  • Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C (2012) Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 17(8):1124–1160

    CAS  PubMed  Google Scholar 

  • Mhamdi A, Van Breusegem F (2018) Reactive oxygen species in plant development. Development 145(15):dev164376

    PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    CAS  PubMed  Google Scholar 

  • Mou Z, Fan WH, Dong XN (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113(7):935–944

    CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Satoh K, Al-Shammari T, Shimizu T, Sasaya T, Omura T, Kikuchi S (2012) The thioredoxin gene family in rice: genome-wide identification and expression profiling under different biotic and abiotic treatments. Biochem Biophys Res Commun 423(2):417–423

    CAS  PubMed  Google Scholar 

  • Oh DH, Dassanayake M, Bohnert HJ, Cheeseman JM (2012) Life at the extreme: lessons from the genome. Genome Biol 13(3):241

    PubMed  PubMed Central  Google Scholar 

  • Park SK, Jung YJ, Lee JR, Lee YM, Jang HH, Lee SS, Park JH, Kim SY, Moon JC, Lee SY, Chae HB, Shin MR, Jung JH, Kim MG, Kim WY, Yun DJ, Lee KO, Lee SY (2009) Heat-shock and redox-dependent functional switching of an h-type Arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone. Plant Physiol 150(2):552–561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popova OV, Yang O, Dietz KJ, Golldack D (2008) Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation. Gene 423(2):142–148

    CAS  PubMed  Google Scholar 

  • Pradhan AK, Rehman M, Saikia D, Jyoti SY, Poudel J, Tanti B (2020) Biochemical and molecular mechanism of abiotic stress tolerance in plants. In: Hasanuzzaman M (ed) Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I: general consequences and plant responses. Springer, Singapore, pp 825–853

  • Shaikhali J, Wingsle G (2017) Redox-regulated transcription in plants: emerging concepts. Aims Mol Sci 4(3):301–338

    CAS  Google Scholar 

  • Song Y, Cui J, Zhang H, Wang G, Zhao F-J, Shen Z (2012) Proteomic analysis of copper stress responses in the roots of two rice (Oryza sativa L.) varieties differing in Cu tolerance. Plant Soil 366(1–2):647–658

    Google Scholar 

  • Song M, Kim JS, Liu L, Husain M, Vazquez-Torres A (2016) Antioxidant Defense by Thioredoxin can occur independently of canonical thiol-disulfide oxidoreductase enzymatic activity. Cell Rep 14(12):2901–2911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Ren H, Liu R, Li B, Wu T, Sun F, Liu H, Wang X, Dong H (2010) An h-type thioredoxin functions in tobacco defense responses to two species of viruses and an abiotic oxidative stress. Mol Plant Microbe Interact 23(11):1470–1485

    CAS  PubMed  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321(5891):952–956

    CAS  PubMed  Google Scholar 

  • Takemoto T, Zhang QM, Yonei S (1998) Different mechanisms of thioredoxin in its reduced and oxidized forms in defense against hydrogen peroxide in Escherichia coli. Free Radic Biol Med 24(4):556–562

    CAS  PubMed  Google Scholar 

  • Thormahlen I, Meitzel T, Groysman J, Ochsner AB, von Roepenack-Lahaye E, Naranjo B, Cejudo FJ, Geigenberger P (2015) Thioredoxin f1 and NADPH-dependent Thioredoxin reductase C have overlapping functions in regulating photosynthetic metabolism and plant growth in response to varying light conditions. Plant Physiol 169(3):1766–1786

    PubMed  PubMed Central  Google Scholar 

  • Ugarte N, Petropoulos I, Friguet B (2010) Oxidized mitochondrial protein degradation and repair in aging and oxidative stress. Antioxid Redox Signal 13(4):539–549

    CAS  PubMed  Google Scholar 

  • Vieira Dos Santos C, Rey P (2006) Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci 11(7):329–334

    CAS  PubMed  Google Scholar 

  • Wang Y, Gao C, Liang Y, Wang C, Yang C, Liu G (2010) A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol 167(3):222–230

    CAS  PubMed  Google Scholar 

  • Wu F, Li Q, Yan H, Zhang D, Jiang G, Jiang Y, Duan X (2016) Characteristics of three thioredoxin genes and their role in chilling tolerance of harvested Banana fruit. Int J Mol Sci 17(9):1526

    PubMed Central  Google Scholar 

  • Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66(10):2839–2856

    CAS  PubMed  Google Scholar 

  • Xie G, Kato H, Sasaki K, Imai R (2009) A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. Febs Lett 583(17):2734–2738

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10(2):88–94

    CAS  PubMed  Google Scholar 

  • Zeller T, Klug G (2006) Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften 93(6):259–266

    CAS  PubMed  Google Scholar 

  • Zhang CJ, Zhao BC, Ge WN, Zhang YF, Song Y, Sun DY, Guo Y (2011) An apoplastic h-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice. Plant Physiol 157(4):1884–1899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zouari N, Ben Saad R, Legavre T, Azaza J, Sabau X, Jaoua M, Masmoudi K, Hassairi A (2007) Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis. Gene 404(1–2):61–69

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants provided by the Tunisian Ministry of Higher Education and Scientific Research (Program contract 2019–2022).

Author information

Authors and Affiliations

Authors

Contributions

RBS conceived the study conception and design. Experiments, data collection, and data analysis were performed by OJ, MTB, ABH, RBS and WBR. The manuscript was written by RBS and WBR. All authors read and approved the manuscript.

Corresponding author

Correspondence to Rania Ben Saad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Communicated by Neelam Sangwan.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

10725_2022_805_MOESM1_ESM.tif

Amino acid sequences alignment of LmTrxh2 and its homologs belonging to plant thioredoxins. The location of the thioredoxin superfamily conserved domain is surrounded by a green dashed line, and the position of thioredoxin motif is surrounded by a solid red box. The two catalytic conserved cysteine residues were labeled with blew Arrows. GenBank accession numbers of different plant thioredoxins proteins used in this multiple alignment are arranged as follows: A. thaliana (NP_198811), C. sativa (XP_019089899), A. lyrata (XP_020872997), C. rubella (XP_006284753), E. salsugineum (XP_024014606), B. oleracea (XP_013589887), R. sativus (XP_018446242), B. rapa (XP_009125122), T. hassleriana (XP_010531799), A. duranensis (XP_015962819), G. soja (KHN13657), T. aestivum (ACH61777), O. sativa (XP_015646978), and O. sativa (XP_015631704). Supplementary Material 1. 22660 kb

Supplementary Material 2. 20 kb

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Saad, R., Ben Romdhane, W., Bouteraa, M.T. et al. Lobularia maritima thioredoxin-h2 gene mitigates salt and osmotic stress damage in tobacco by modeling plant antioxidant system. Plant Growth Regul 97, 101–115 (2022). https://doi.org/10.1007/s10725-022-00805-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-022-00805-0

Keywords

Navigation