Skip to main content

Advertisement

Log in

Role of agrochemical-based nanomaterials in plants: biotic and abiotic stress with germination improvement of seeds

  • Review paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Nanotechnology has provided advancement opportunities in different fields of sciences related to plants such as agriculture. Plants are one of the most critical components of the ecosystem. Therefore, the perception of the behavior of plants in the presence of nanomaterials (NMs) plays an important role in achieving the goals of sustainable agriculture. NMs depending on physicochemical and structural properties show positive or negative effects on plants exposed to them. Additionally, plant effects can be affected differently from species to species. The interaction of the plant with NMs leads to an effect on the morphology and physiology of plant organs. Some NMs play a significant role in improving stresses. The concept of engineered nano-carriers may be a promising route to address difficult challenges in agriculture that could perhaps lead to an increase in crop production while reducing the environmental impact associated with crop protection and food production. Herein we comprehensively review the application ability of different NMs in the enhancement of seed germination and plant growth, as well as the role of NMs in combating plant biotic and abiotic stresses such as drought, salt, temperature, metal, UV–B radiation, and flooding. Furthermore, suitable strategies adopted by plants in presence of NMs under challenging environments are also being presented. Also, the efficiency of NMs in the seed priming approach to enhance seed germination was evaluated. In the last section of this review, the phytotoxicity of NMs is discussed. The details provided herein provide a step forward for the practical use of nanoparticles in agriculture. Ultimately, this leads nanotechnology to design inputs based on agricultural needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

ATP:

Adenosine thiphosphate

BY:

Biological yield

CaBPs:

Calcium-binding proteins

DAR:

Dehydroascorbate reductase

CAT:

Catalase

En:

Environmental

Chl:

Chlorophyll

GB:

Glysin Betain

Ge:

Genetics

GR:

Glutathione reductase

GO:

Graphene oxide

H2O2 :

Hydrogen peroxide

HO2–:

Hydroperoxide radical

HSPs:

Heat shock proteins

HT:

High temperature

LT:

Low temperature

MDA:

Malodialdehyde

MDAR:

Monodehydroascorbate reductase

NMs:

Nanomaterial

NO:

Nitric oxide

NPs:

Nanoparticles

NSs:

Nano-scales

O2–:

Superoxide radical

OH–:

Hydroxyl radical

POX:

Peroxidase

Pn:

Photosynthesis

QDs:

Quantum dots

ROS:

Reactive oxygen species

Rubisco:

Ribulose bis-phosphate carboxylase

SOD:

Superoxide dismutase

SWCNTs:

Single-walled Carbone nanotube

TP:

Total protein

WUE:

Water use efficiency

ZVI:

Zero-valent iron

References

  • Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology applications in plant protection. Springer, Berlin

    Book  Google Scholar 

  • Abdel Latef AAH, Srivastava AK, El-sadek MSA, Kordrostami M, Tran LSP (2018) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev 29(4):1065–1073

    Article  Google Scholar 

  • Acharya P, Jayaprakasha G, Crosby KM, Jifon JL, Patil BS (2019) Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.). ACS Sustain Chem Eng 7(17):14580–14590

    Article  CAS  Google Scholar 

  • Acharya P, Jayaprakasha GK, Crosby KM, Jifon JL, Patil BS (2020a) Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Sci Rep 10(1):1–16

    Article  Google Scholar 

  • Acharya P, Jayaprakasha GK, Semper J, Patil BS (2020b) 1H Nuclear magnetic resonance and liquid chromatography coupled with mass spectrometry-based metabolomics reveal enhancement of growth-promoting metabolites in onion seedlings treated with green-synthesized nanomaterials. J Agric Food Chem 68(46):13206–13220

    Article  CAS  PubMed  Google Scholar 

  • Agathokleous E, Calabrese EJ (2020) A global environmental health perspective and optimisation of stress. Sci Total Environ 704:135263

    Article  CAS  PubMed  Google Scholar 

  • Agathokleous E, Kitao M, Calabrese EJ (2019a) Hormesis: a compelling platform for sophisticated plant science. Trends Plant Sci 24(4):318–327

    Article  CAS  PubMed  Google Scholar 

  • Agathokleous E, Kitao M, Calabrese EJ (2019b) Hormetic dose responses induced by lanthanum in plants. Environ Pollut 244:332–341

    Article  CAS  PubMed  Google Scholar 

  • Agathokleous E, Kitao M, Harayama H, Calabrese EJ (2019c) Temperature-induced hormesis in plants. J For Res 30(1):13–20

    Article  Google Scholar 

  • Agency UEP (1996) Ecological effects test guidelines. OPPTS 850.4150 terrestrial plant toxicity, Tier I (Vegetative Vigor)

  • Aghdam MTB, Mohammadi H, Ghorbanpour M (2016) Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Braz J Bot 39(1):139–146

    Article  Google Scholar 

  • Ahmad H, Venugopal K, Bhat A, Kavitha K, Ramanan A, Rajagopal K, Srinivasan R, Manikandan E (2020a) Enhanced biosynthesis synthesis of copper oxide nanoparticles (CuO-NPs) for their antifungal activity toxicity against major phyto-pathogens of apple orchards. Pharm Res 37(12):1–12

    Article  Google Scholar 

  • Ahmad H, Venugopal K, Rajagopal K, De Britto S, Nandini B, Pushpalatha HG, Konappa N, Udayashankar AC, Geetha N, Jogaiah S (2020b) Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globules and their fungicidal ability against pathogenic fungi of apple orchards. Biomolecules. https://doi.org/10.3390/biom10030425

    Article  PubMed  PubMed Central  Google Scholar 

  • Al Shater H, Moustafa HZ, Yousef H (2020) Synthesis, phytochemical screening and toxicity measuring against Earias insulana (Boisd.)(Lepidoptera: Noctuidae) of silver nano particles from Origanum marjorana extract in the field. Egypt Acad J Biol Sci F Toxicol Pest Control 12(1):175–184

    Article  Google Scholar 

  • Alam T, Khan RAA, Ali A, Sher H, Ullah Z, Ali M (2019) Biogenic synthesis of iron oxide nanoparticles via Skimmia laureola and their antibacterial efficacy against bacterial wilt pathogen Ralstonia solanacearum. Mater Sci Eng C 98:101–108

    Article  CAS  Google Scholar 

  • Alharbi NS, Bhakyaraj K, Gopinath K, Govindarajan M, Kumuraguru S, Mohan S, Kaleeswarran P, Kadaikunnan S, Khaled JM, Benelli G (2017) Gum-mediated fabrication of eco-friendly gold nanoparticles promoting cell division and pollen germination in plant cells. J Cluster Sci 28(1):507–517

    Article  CAS  Google Scholar 

  • Alharby HF, Metwali EM, Fuller MP, Aldhebiani AY (2016) The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill) under stress of NaCl and/or ZnO nanoparticles. Saudi J Biol Sci 23(6):773–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Huqail AA, Hatata MM, Al-Huqail AA, Ibrahim MM (2018) Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi J Biol Sci 25(2):313–319

    Article  CAS  PubMed  Google Scholar 

  • Almutairi ZM (2016) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. Plant Omics 9(1):106–114

    CAS  Google Scholar 

  • AlQuraidi AO, Mosa KA, Ramamoorthy K (2019) Phytotoxic and genotoxic effects of copper nanoparticles in coriander (Coriandrum sativum—Apiaceae). Plants 8(1):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alshehddi LAA, Bokhari N (2020) Influence of gold and silver nanoparticles on the germination and growth of Mimusops laurifolia seeds in the South–Western regions in Saudi Arabia. Saudi J Biol Sci 27(1):574–580

    Article  Google Scholar 

  • Amari T, Ghnaya T, Abdelly C (2017) Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. S Afr J Bot 111:99–110

    Article  CAS  Google Scholar 

  • Amiri RM, Yur’eva NO, Shimshilashvili KR, Goldenkova-Pavlova IV, Pchelkin VP, Kuznitsova EI, Tsydendambaev VD, Trunova TI, Los DA, Jouzani GS (2010) Expression of acyl-lipid Δ12-desaturase gene in prokaryotic and eukaryotic cells and its effect on cold stress tolerance of potato. J Integr Plant Biol 52(3):289–297

    Article  CAS  PubMed  Google Scholar 

  • Arduini I, Godbold DL, Onnis A (1996) Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiol Plant 97(1):111–117

    Article  CAS  Google Scholar 

  • Armstrong W (2002) Root growth and metabolism under oxygen deficiency. Plant roots: the hidden half. CRC Press, Boca Raton, pp 729–761

    Google Scholar 

  • Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705

    Article  PubMed  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63(10):3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Awasthi A, Bansal S, Jangir LK, Awasthi G, Awasthi KK, Awasthi K (2017) Effect of ZnO nanoparticles on germination of Triticum aestivum seeds. Macromol Symp 1:1700043

    Article  Google Scholar 

  • Azimi R, Borzelabad MJ, Feizi H, Azimi A (2014) Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Polish J Chem Technol 16(3):25–29

    Article  CAS  Google Scholar 

  • Banik S, Luque AP (2017) In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants. Span J Agric Res 15(2):23

    Article  Google Scholar 

  • Baz H, Creech M, Chen J, Gong H, Bradford K, Huo H (2020) Water-soluble carbon nanoparticles improve seed germination and post-germination growth of lettuce under salinity stress. Agronomy 10(8):1192

    Article  CAS  Google Scholar 

  • Belal E-S, El-Ramady H (2016) Nanoparticles in water, soils and agriculture. Nanoscience in food and agriculture 2. Springer, Cham, pp 311–358

    Chapter  Google Scholar 

  • Belz RG, Duke SO (2017) Herbicide-mediated hormesis. Pesticide dose: effects on the environment and target and non-target organisms. ACS Publications, Washington, D.C, pp 135–148

    Chapter  Google Scholar 

  • Belz RG, Piepho H-P (2017) Predicting biphasic responses in binary mixtures: pelargonic acid versus glyphosate. Chemosphere 178:88–98

    Article  CAS  PubMed  Google Scholar 

  • Benelli G (2016) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme Microb Technol 95:58–68

    Article  CAS  Google Scholar 

  • Berry R III, López-Martínez G (2020) A dose of experimental hormesis: when mild stress protects and improves animal performance. Comp Biochem Physiol Part A Mol Integr Physiol 242:110658

    Article  CAS  Google Scholar 

  • Biglouei M, Assimi M, Akbarzadeh A (2010) Effect of water stress at different growth stages on quantity and quality traits of Virginia (flue-cured) tobacco type. Plant Soil Environ 56(2):67–75

    Article  Google Scholar 

  • Bodale I, Teliban G-C, Ursu E-L, Stoleru V, Cazacu A (2019) The influence of gold nanoparticles on germination of carrot seeds. Int Multidiscip Sci GeoConf SGEM 19(6.1):451–458

    Google Scholar 

  • Borgatta J, Ma C, Hudson-Smith N, Elmer W, Plaza Pérez CD, De La Torre-Roche R, Zuverza-Mena N, Haynes CL, White JC, Hamers RJ (2018) Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): role of particle morphology, composition and dissolution behavior. ACS Sustain Chem Eng 6(11):14847–14856. https://doi.org/10.1021/acssuschemeng.8b03379

    Article  CAS  Google Scholar 

  • Boxi SS, Mukherjee K, Paria S (2016) Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. Nanotechnology 27(8):085103

    Article  PubMed  Google Scholar 

  • Budhani S, Egboluche NP, Arslan Z, Yu H, Deng H (2019) Phytotoxic effect of silver nanoparticles on seed germination and growth of terrestrial plants. J Environ Sci Health C 37(4):330–355

    Article  CAS  Google Scholar 

  • Bumbudsanpharoke N, Choi J, Ko S (2015) Applications of nanomaterials in food packaging. J Nanosci Nanotechnol 15(9):6357–6372

    Article  CAS  PubMed  Google Scholar 

  • Cai L, Cai L, Jia H, Liu C, Wang D, Sun X (2020) Foliar exposure of Fe3O4 nanoparticles on Nicotiana benthamiana: evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. J Hazardous Mater 393:122415

    Article  CAS  Google Scholar 

  • Calabrese EJ, Mattson MP (2017) How does hormesis impact biology, toxicology, and medicine? NPJ Aging Mech Dis 3(1):1–8

    Article  Google Scholar 

  • Caldwell MM, Bornman J, Ballaré C, Flint SD, Kulandaivelu G (2007) Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci 6(3):252–266

    Article  CAS  PubMed  Google Scholar 

  • Camps I, Borlaf M, Colomer MT, Moreno R, Duta L, Nita C, Del Pino AP, Logofatu C, Serna R, György E (2017) Structure-property relationships for Eu doped TiO2 thin films grown by a laser assisted technique from colloidal sols. RSC Adv 7(60):37643–37653

    Article  CAS  Google Scholar 

  • Carvalho MEA, Piotto FA, Franco MR, Rossi ML, Martinelli AP, Cuypers A, Azevedo RA (2019) Relationship between Mg, B and Mn status and tomato tolerance against Cd toxicity. J Environ Manag 240:84–92

    Article  CAS  Google Scholar 

  • Castiglione MR, Giorgetti L, Bellani L, Muccifora S, Bottega S, Spanò C (2016) Root responses to different types of TiO2 nanoparticles and bulk counterpart in plant model system Vicia faba L. Environ Exp Bot 130:11–21

    Article  Google Scholar 

  • Castro-González CG, Sánchez-Segura L, Gómez-Merino FC, Bello-Bello JJ (2019) Exposure of stevia (Stevia rebaudiana B.) to silver nanoparticles in vitro: transport and accumulation. Sci Rep 9(1):1–10

    Article  Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25(3):335–347

    Article  CAS  PubMed  Google Scholar 

  • Chemicals OGfto (2003) Terrestrial plant test: 208: seedling emergence and seedling growth test. Organisation for Economic Co-operation and Development, Paris

    Google Scholar 

  • Chen H, Zhai J, Han R (2011) Influence of enhanced UV–B radiation on F-actin in wheat division cells. Plant Divers Resour 33(3):306–310

    CAS  Google Scholar 

  • Chen H, Gong Y, Han R (2014) Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV–B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings. PLoS One 9(10):e110400

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Sun L, Cheng Y, Lu Z, Shao K, Li T, Hu C, Han H (2016) Graphene oxide-silver nanocomposite: novel agricultural antifungal agent against Fusarium graminearum for crop disease prevention. ACS Appl Mater Interfaces 8(36):24057–24070

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Mao S, Xu Z, Ding W (2019) Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soilborne Ralstonia solanacearum. RSC Adv 9(7):3788–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16(10):524–531

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Li Y, Jin Q, Li F (2020) Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall. Environ Sci Nano 7(1):162–171

    Article  CAS  Google Scholar 

  • Cvjetko P, Zovko M, Štefanić PP, Biba R, Tkalec M, Domijan A-M, Vrček IV, Letofsky-Papst I, Šikić S, Balen B (2018) Phytotoxic effects of silver nanoparticles in tobacco plants. Environ Sci Pollut Res 25(6):5590–5602

    Article  CAS  Google Scholar 

  • Dağhan H (2018) Effects of TiO2 nanoparticles on maize (Zea mays L.) growth, chlorophyll content and nutrient uptake. Appl Ecol Environ Res 16:6873–6883

    Google Scholar 

  • Das S, Yadav A, Debnath N (2019) Entomotoxic efficacy of aluminium oxide, titanium dioxide and zinc oxide nanoparticles against Sitophilus oryzae (L.): a comparative analysis. J Stored Prod Res 83:92–96

    Article  Google Scholar 

  • Das CA, Kumar VG, Dhas TS, Karthick V, Govindaraju K, Joselin JM, Baalamurugan J (2020) Antibacterial activity of silver nanoparticles (biosynthesis): a short review on recent advances. Biocatal Agric Biotechnol 27:101593

    Article  Google Scholar 

  • Davar ZF, Roozbahani A, Hosnamidi A (2014) Evaluation the effect of water stress and foliar application of Fe nanoparticles on yield, yield components and oil percentage of safflower (Carthamus tinctorious L.)

  • de França Bettencourt GM, Degenhardt J, Torres LAZ, de Andrade Tanobe VO, Soccol CR (2020) Green biosynthesis of single and bimetallic nanoparticles of iron and manganese using bacterial auxin complex to act as plant bio-fertilizer. Biocatal Agric Biotechnol 30:101822

    Article  Google Scholar 

  • Debnath K, Das A, Das B, Karfoma J (2020) TiO2 nanoparticles enhancing germination, growth and yield of rice. Int Res J Pure Appl Chem 21:25–30

    Article  Google Scholar 

  • Deng F, Wang S, Xin H (2016) Toxicity of CuO nanoparticles to structure and metabolic activity of Allium cepa root tips. Bull Environ Contam Toxicol 97(5):702–708

    Article  CAS  PubMed  Google Scholar 

  • Devi HS, Boda MA, Shah MA, Parveen S, Wani AH (2019) Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Process Synth 8(1):38–45

    Article  CAS  Google Scholar 

  • Dietz K-J, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16(11):582–589

    Article  CAS  PubMed  Google Scholar 

  • Djiwanti SR, Kaushik S (2019) Nanopesticide: future application of nanomaterials in plant protection. Plant nanobionics. Springer, Cham, pp 255–298

    Chapter  Google Scholar 

  • Dura O, Tülek A, Sönmez İ, Erdoğuş F, Yeşilayer A, Kepenekci İ (2019) Effects of silver nanoparticle (AgNPs) applications prepared using Lantana camara L. (Lamiales: Verbenaceae)’s aqueous extract on wheat gal nematode [Anguina tritici Thorne, 1949 (Nematoda: Anguinidae)]. Bitki Koruma Bül 59(2):49–53

    Article  Google Scholar 

  • Durenne B, Druart P, Blondel A, Fauconnier M-L (2018) How cadmium affects the fitness and the glucosinolate content of oilseed rape plantlets. Environ Exp Bot 155:185–194

    Article  CAS  Google Scholar 

  • Dutta P (2018) Seed priming: new vistas and contemporary perspectives. Advances in seed priming. Springer, Singapore, pp 3–22

    Google Scholar 

  • El-Batal AI, Balabel NM, Attia MS, El-Sayyad GS (2019) Antibacterial and antibiofilm potential of mono-dispersed stable copper oxide nanoparticles-streptomycin nano-drug: implications for some potato plant bacterial pathogen treatment. J Cluster Sci 31:1–20

    Google Scholar 

  • Eleftheriou EP, Adamakis I-DS, Melissa P (2012) Effects of hexavalent chromium on microtubule organization, ER distribution and callose deposition in root tip cells of Allium cepa L. Protoplasma 249(2):401–416

    Article  CAS  PubMed  Google Scholar 

  • Falco WF, Scherer MD, Oliveira SL, Wender H, Colbeck I, Lawson T, Caires AR (2020) Phytotoxicity of silver nanoparticles on Vicia faba: evaluation of particle size effects on photosynthetic performance and leaf gas exchange. Sci Total Environ 701:134816

    Article  CAS  PubMed  Google Scholar 

  • Fan Z, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 5(10):1561–1573

    Article  CAS  PubMed  Google Scholar 

  • Faraji J, Sepehri A (2019) Ameliorative effects of TiO2 nanoparticles and sodium nitroprusside on seed germination and seedling growth of wheat under PEG-stimulated drought stress. J Seed Sci 41(3):309–317

    Article  Google Scholar 

  • Fathi Z, Nejad R-AK, Mahmoodzadeh H, Satari TN (2017) Investigating of a wide range of concentrations of multi-walled carbon nanotubes on germination and growth of castor seeds (Ricinus communis L.). J Plant Prot Res 57(3):228–236

    Article  CAS  Google Scholar 

  • Feng J, Lin Y, Yang Y, Shen Q, Huang J, Wang S, Zhu X, Li Z (2018) Tolerance and bioaccumulation of Cd and Cu in Sesuvium portulacastrum. Ecotoxicol Environ Saf 147:306–312

    Article  CAS  PubMed  Google Scholar 

  • Filippou P, Bouchagier P, Skotti E, Fotopoulos V (2014) Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environ Exp Bot 97:1–10

    Article  CAS  Google Scholar 

  • Firouzeh N, Malakootian M, Asadzadeh SN, Khatami M, Makarem Z (2021) Degradation of ciprofloxacin using ultrasound/ZnO/oxone process from aqueous solution-lab-scale analysis and optimization. BioNanoScience 11(2):306–313

    Article  Google Scholar 

  • Fytianos G, Rahdar A, Kyzas GZ (2020) Nanomaterials in cosmetics: recent updates. Nanomaterials 10(5):979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res 111(1):239–253

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Avellan A, Laughton S, Vaidya R, SnM R, Casman EA, Lowry GV (2018) CuO nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in rhizosphere soil. Environ Sci Technol 52(5):2888–2897

    Article  CAS  PubMed  Google Scholar 

  • Gao T, Li C, Zhang Y, Yang M, Jia D, Jin T, Hou Y, Li R (2019) Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribol Int 131:51–63

    Article  CAS  Google Scholar 

  • García-Gómez C, Obrador A, González D, Babín M, Fernández MD (2018) Comparative study of the phytotoxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil. Sci Total Environ 644:770–780

    Article  PubMed  Google Scholar 

  • Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    Article  CAS  PubMed  Google Scholar 

  • Ghassemi-Golezani K, Hosseinzadeh-Mahootchy A, Zehtab-Salmasi S, Tourchi M (2012) Improving field performance of aged chickpea seeds by hydro-priming under water stress. Int J Plant Anim Environ Sci 2:168–176

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408

    Article  CAS  PubMed  Google Scholar 

  • Gohari G, Alavi Z, Esfandiari E, Panahirad S, Hajihoseinlou S, Fotopoulos V (2020a) Interaction between hydrogen peroxide and sodium nitroprusside following chemical priming of Ocimum basilicum L. against salt stress. Physiol Plant 168(2):361–373

    CAS  PubMed  Google Scholar 

  • Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour MR, Fotopoulos V, Kimura S (2020b) Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci Rep 10(1):1–14

    Article  Google Scholar 

  • Goldberg RB, De Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266(5185):605–614

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222

    Article  CAS  PubMed  Google Scholar 

  • Gull A, Lone AA, Wani NUI (2019) Biotic and abiotic stresses in plants. Abiotic and biotic stress in plants. IntechOpen, London, pp 1–19

    Google Scholar 

  • Hada K, Kachhwaha N (2020) Screening of green AgNPs against the larvicidal activity of Anopheles stephensi. Flora Fauna 26(1):107–112

    Article  Google Scholar 

  • Haghighi M, Pessarakli M (2013) Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci Hortic 161:111–117

    Article  CAS  Google Scholar 

  • Hamza A, El-Mogazy S, Derbalah A (2016) Fenton reagent and titanium dioxide nanoparticles as antifungal agents to control leaf spot of sugar beet under field conditions. J Plant Prot Res. https://doi.org/10.1515/jppr-2016-0040

    Article  Google Scholar 

  • Han R, Wang X, Yue M (2002) Influence of He–Ne laser irradiation on the excision repair of cyclobutyl pyrimidine dimers in the wheat DNA. Chin Sci Bull 47(10):818–821

    Article  CAS  Google Scholar 

  • Hancock J, Desikan R, Neill S (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29(2):345–349

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Zhang Z-T, Rui Y-K, Ren J-Y, Hou T-Q, Wu S-J, Rui M-M, Jiang F-P, Liu L-M (2016) Effect of different nanoparticles on seed germination and seedling growth in rice. 2nd Annual international conference on advanced material engineering (AME 2016). Atlantis Press, Amsterdam

    Google Scholar 

  • Hao Y, Fang P, Ma C, White JC, Xiang Z, Wang H, Zhang Z, Rui Y, Xing B (2019a) Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. Environ Res 170:1–6

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Xu B, Ma C, Shang J, Gu W, Li W, Hou T, Xiang Y, Cao W, Xing B (2019b) Synthesis of novel mesoporous carbon nanoparticles and their phytotoxicity to rice (Oryza sativa L.). J Saudi Chem Soc 23(1):75–82

    Article  CAS  Google Scholar 

  • Hari S (2020) Biosynthesis of nanoparticles from microorganisms. Drug Delivery 8:9

    Google Scholar 

  • Hartikainen H, Xue T, Piironen V (2000) Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 225(1):193–200

    Article  CAS  Google Scholar 

  • Hasaneen M, Abdel-aziz HMM, Omer AM (2016) Effect of foliar application of engineered nanomaterials: carbon nanotubes NPK and chitosan nanoparticles NPK fertilizer on the growth of French bean plant. Biochem Biotechnol Res 4(4):68–76

    Google Scholar 

  • Hasanpour H, Maali-Amir R, Zeinali H (2015) Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea. Russ J Plant Physiol 62(6):779–787

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Extreme temperature responses, oxidative stress and antioxidant defense in plants. Abiotic Stress-Plant Responses Appl Agric 13:169–205

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2014) Silicon and selenium: two vital trace elements that confer abiotic stress tolerance to plants. Emerging technologies and management of crop stress tolerance. Elsevier, Amsterdam, pp 377–422

    Chapter  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51(1):463–499

    Article  CAS  Google Scholar 

  • Hassan TU, Bano A, Naz I (2017) Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int J Phytorem 19(6):522–529

    Article  Google Scholar 

  • Hassanisaadi M, Shahidi Bonjar GH (2016) Plants used in folkloric medicine of Iran are exquisite bio-resources in production of silver nanoparticles. IET Nanobiotechnol 11(3):300–309

    Article  Google Scholar 

  • Hassanisaadi M, Bonjar GHS, Rahdar A, Pandey S, Hosseinipour A, Abdolshahi R (2021) Environmentally safe biosynthesis of gold nanoparticles using plant water extracts. Nanomaterials 11(8):2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawrylak-Nowak B, Matraszek R, Szymańska M (2010) Selenium modifies the effect of short-term chilling stress on cucumber plants. Biol Trace Elem Res 138(1):307–315

    Article  CAS  PubMed  Google Scholar 

  • Heidarvand L, Amiri RM, Naghavi M, Farayedi Y, Sadeghzadeh B, Alizadeh K (2011) Physiological and morphological characteristics of chickpea accessions under low temperature stress. Russ J Plant Physiol 58(1):157–163

    Article  CAS  Google Scholar 

  • Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Heß B, Macháčková I, Fischer U, Leubner-Metzger G (2007) 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J Exp Bot 58(11):3047–3060

    Article  CAS  PubMed  Google Scholar 

  • Heydari M, Mir N, Moussavi-Nik SM (2018) Reducing nitrogen loss by application of natural clinoptilolite modified with quaternary N-Alkyl agent as controlled-release fertilizer in two species of beans (P. Vulgaris and Vigna unguiculata). Commun Soil Sci Plant Anal 49(13):1586–1603

    Article  CAS  Google Scholar 

  • Heydari M, Yousefi AR, Rahdar A, Nikfarjam N, Jamshidi K, Bilal M, Taboada P (2021) Microemulsions of tribenuron-methyl using Pluronic F127: physico-chemical characterization and efficiency on wheat weed. J Mol Liquids 326:115263

    Article  CAS  Google Scholar 

  • Hill H, Bradford KJ, Cunningham J, Taylor AG (2008) Primed lettuce seeds exhibit increased sensitivity to moisture during aging. Acta Hort 782:135

    Article  Google Scholar 

  • Hong F, Liu C, Zheng L, Wang X, Wu K, Song W, Lü S, Tao Y, Zhao G (2005) Formation of complexes of Rubisco–Rubisco activase from La3+, Ce3+ treatment spinach. Sci China, Ser B: Chem 48(1):67

    Article  CAS  Google Scholar 

  • Hou F, Thseng F (1991) Studies on the flooding tolerance of soybean seed: varietal differences. Euphytica 57(2):169–173

    Article  Google Scholar 

  • Hu J, Wu C, Ren H, Wang Y, Li J, Huang J (2018) Comparative analysis of physiological impact of γ-Fe2O3 nanoparticles on dicotyledon and monocotyledon. J Nanosci Nanotechnol 18(1):743–752

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Wang L (2016) Experimental studies on nanomaterials for soil improvement: a review. Environ Earth Sci 75(6):497

    Article  Google Scholar 

  • Huang R, McPhedran KN, Sun N, Chelme-Ayala P, El-Din MG (2016) Investigation of the impact of organic solvent type and solution pH on the extraction efficiency of naphthenic acids from oil sands process-affected water. Chemosphere 146:472–477

    Article  CAS  PubMed  Google Scholar 

  • Hussain M, Raja N, Mashwani Z-U-R, Iqbal M, Sabir S, Yasmeen F (2017) In vitro seed germination and biochemical profiling of Artemisia absinthium exposed to various metallic nanoparticles. 3 Biotech 7:1–8

    Article  Google Scholar 

  • Hussain M, Raja NI, Iqbal M, Ejaz M, Aslam S, Rehman AU, Javaid U (2018) Seed germination and biochemical profile of Citrus reticulata (Kinnow) exposed to green synthesised silver nanoparticles. IET Nanobiotechnol 12(5):688–693. https://doi.org/10.1049/iet-nbt.2017.0303

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibrahim M, Khan P, Hegazy S, Hashim E, Azamal H, Ansari M, Altaf A, Muhammad I, Hakeem K (2015) Improving the phytoextraction capacity of plants to scavenge heavy-metal infested sites. Environ Rev 23:1–22

    Google Scholar 

  • Ibrahim E, Zhang M, Zhang Y, Hossain A, Qiu W, Chen Y, Wang Y, Wu W, Sun G, Li B (2020) Green-synthesization of silver nanoparticles using endophytic bacteria isolated from garlic and its antifungal activity against wheat Fusarium head blight pathogen Fusarium graminearum. Nanomaterials 10(2):219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irshad MA, Nawaz R, ur Rehman MZ, Imran M, Ahmad J, Ahmad S, Inam A, Razzaq A, Rizwan M, Ali S (2020) Synthesis and characterization of titanium dioxide nanoparticles by chemical and green methods and their antifungal activities against wheat rust. Chemosphere 258:127352

    Article  CAS  PubMed  Google Scholar 

  • Jadczak P, Kulpa D, Bihun M, Przewodowski W (2019) Positive effect of AgNPs and AuNPs in in vitro cultures of Lavandula angustifolia Mill. Plant Cell Tissue Organ Cult (PCTOC) 139(1):191–197

    Article  CAS  Google Scholar 

  • Jafarirad S, Kosari-Nasab M, Tavana RM, Mahjouri S, Ebadollahi R (2020) Impacts of manganese bio-based nanocomposites on phytochemical classification, growth and physiological responses of Hypericum perforatum L. shoot cultures. Ecotoxicol Environ Safety 209:111841

    Article  PubMed  Google Scholar 

  • Javed HMA, Que W, Ahmad MR, Ali K, Ahmad MI, ul Haq A, Sharma S (2020) Perspective of nanomaterials in the performance of solar cells. Solar cells. Springer, Cham, pp 25–54

    Chapter  Google Scholar 

  • Jayarambabu N, Rao K, Park S, Rajendar V (2018) Biogenic synthesized Fe3O4 nanoparticles affect on growth parameter of maize (Zea mays L.). Digest J Nanomater Biostruct 13(4):903–913

    Google Scholar 

  • Jia L, Liu Z, Chen W, Ye Y, Yu S, He X (2015) Hormesis effects induced by cadmium on growth and photosynthetic performance in a Hyperaccumulator, Lonicera japonica Thunb. J Plant Growth Regul 34(1):13–21

    Article  CAS  Google Scholar 

  • Jiang HS, Qiu XN, Li GB, Li W, Yin LY (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 33(6):1398–1405

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Miclăuş T, Wang L, Foldbjerg R, Sutherland DS, Autrup H, Chen C, Beer C (2015) Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology 9(2):181–189

    Article  CAS  PubMed  Google Scholar 

  • Joshi A, Kaur S, Dharamvir K, Nayyar H, Verma G (2018) Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). J Sci Food Agric 98(8):3148–3160

    CAS  PubMed  Google Scholar 

  • Kabir E, Kumar V, Kim K-H, Yip AC, Sohn JR (2018) Environmental impacts of nanomaterials. J Environ Manag 225:261–271

    Article  CAS  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  CAS  PubMed  Google Scholar 

  • Kah M, Tufenkji N, White JC (2019) Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol 14(6):532–540

    Article  CAS  PubMed  Google Scholar 

  • Kahlel A, Ghidan A, Al-Antary T, Alshomali I, Asoufi H (2020) Effects of nanotechnology liquid fertilizers on certain vegetative growth of broad bean (Vicia faba L.). Fresen Environ Bull 29(6):4763–4768

    Google Scholar 

  • Kamali N, Saberi M, Sadeghipour A, Tarnian F (2020) Effect of different concentrations of titanium dioxide nanoparticles on germination and early growth of five desert plant species. ECOPERSIA 9(1):53–59

    Google Scholar 

  • Kanel SR, Greneche J-M, Choi H (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050

    Article  CAS  PubMed  Google Scholar 

  • Karuppanapandian T, Wang HW, Prabakaran N, Jeyalakshmi K, Kwon M, Manoharan K, Kim W (2011) 2, 4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. Plant Physiol Biochem 49(2):168–177

    Article  CAS  PubMed  Google Scholar 

  • Kasote DM, Lee JHJ, Jayaprakasha GK, Patil BS (2019) Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings. ACS Sustain Chem Eng 7(5):5142–5151. https://doi.org/10.1021/acssuschemeng.8b06013

    Article  CAS  Google Scholar 

  • Kato FH, Carvalho MEA, Gaziola SA, Piotto FA, Azevedo RA (2020) Lysine metabolism and amino acid profile in maize grains from plants subjected to cadmium exposure. Sci Agric. https://doi.org/10.1590/1678-992X-2018-0095

    Article  Google Scholar 

  • Khalaki MA, Moameri M, Lajayer BA, Astatkie T (2020) Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regul 93:13–28

    Article  Google Scholar 

  • Khan M (2016) Nano-titanium dioxide (nano-TiO2) mitigates NaCl stress by enhancing antioxidative enzymes and accumulation of compatible solutes in tomato (Lycopersicon esculentum Mill.). J Plant Sci 11(1/3):1–11

    CAS  Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13(3):214–231

    Article  CAS  Google Scholar 

  • Khan N, Singh S, Anjum N, Nazar R (2008) Cadmium effects on carbonic anhydrase, photosynthesis, dry mass and antioxidative enzymes in wheat (Triticum aestivum) under low and sufficient zinc. J Plant Interact 3(1):31–37

    Article  CAS  Google Scholar 

  • Khan MS, Zaka M, Abbasi BH, Rahman L, Shah A (2016) Seed germination and biochemical profile of Silybum marianum exposed to monometallic and bimetallic alloy nanoparticles. IET Nanobiotechnol 10(6):359–366

    Article  Google Scholar 

  • Khan MA, Ali A, Mohammad S, Ali H, Khan T, Jan A, Ahmad P (2020) Iron nano modulated growth and biosynthesis of steviol glycosides in Stevia rebaudiana. Plant Cell Tissue Organ Cult (PCTOC) 143(1):121–130

    Article  CAS  Google Scholar 

  • Khatami M, Varma RS, Heydari M, Peydayesh M, Sedighi A, Agha Askari H, Rohani M, Baniasadi M, Arkia S, Seyedi F (2019) Copper oxide nanoparticles greener synthesis using tea and its antifungal efficiency on Fusarium solani. Geomicrobiol J 36(9):777–781

    Article  CAS  Google Scholar 

  • Khatami M, Khatami S, Mosazade F, Raisi M, Haghighat M, Sabaghan M, Yaghoubi S, Sarani M, Bamorovat M, Malekian L (2020) Greener synthesis of rod shaped zinc oxide nanoparticles using Lilium ledebourii tuber and evaluation of their leishmanicidal activity. Iran J Biotechnol 18(1):e2196

    PubMed  PubMed Central  Google Scholar 

  • Khatua A, Priyadarshini E, Rajamani P, Patel A, Kumar J, Naik A, Saravanan M, Barabadi H, Prasad A, Paul B (2020) Phytosynthesis, characterization and fungicidal potential of emerging gold nanoparticles using Pongamia pinnata leave extract: a novel approach in nanoparticle synthesis. J Cluster Sci 31(1):125–131

    Article  CAS  Google Scholar 

  • Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5(8):8075–8109

    Article  CAS  Google Scholar 

  • Khodakovskaya MV (2016) Future roadmap for plant nanotechnology. Plant nanotechnology. Springer, Cham, pp 367–371

    Chapter  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kiapour H, Moaveni P, Habibi D (2015) Evaluation of the application of gibbrellic acid and titanium dioxide nanoparticles under drought stress on some traits of basil (Ocimum basilicum L.). Int J Agron Agric Res (IJAAR) 6:138–150

    Google Scholar 

  • Kibbey TC, Strevett KA (2019) The effect of nanoparticles on soil and rhizosphere bacteria and plant growth in lettuce seedlings. Chemosphere 221:703–707

    Article  CAS  PubMed  Google Scholar 

  • Kim J-H, Oh Y, Yoon H, Hwang I, Chang Y-S (2015) Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49(2):1113–1119

    Article  CAS  PubMed  Google Scholar 

  • Kim S-A, Lee Y-M, Choi J-Y, Jacobs DR Jr, Lee D-H (2018) Evolutionarily adapted hormesis-inducing stressors can be a practical solution to mitigate harmful effects of chronic exposure to low dose chemical mixtures. Environ Pollut 233:725–734

    Article  CAS  PubMed  Google Scholar 

  • Kohan-Baghkheirati E, Geisler-Lee J (2015) Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. Nanomaterials 5(2):436–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolenčík M, Ernst D, Urík M, Ďurišová Ľ, Bujdoš M, Šebesta M, Dobročka E, Kšiňan S, Illa R, Qian Y (2020) Foliar application of low concentrations of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions. Nanomaterials 10(8):1619

    Article  PubMed  PubMed Central  Google Scholar 

  • Komatsu S, Yamamoto R, Nanjo Y, Mikami Y, Yunokawa H, Sakata K (2009) A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. J Proteome Res 8(10):4766–4778

    Article  CAS  PubMed  Google Scholar 

  • Kreps JA, Wu Y, Chang H-S, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130(4):2129–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Singh A, Panigrahy M, Sahoo PK, Panigrahi KC (2018a) Carbon nanoparticles influence photomorphogenesis and flowering time in Arabidopsis thaliana. Plant Cell Rep 37(6):901–912

    Article  CAS  PubMed  Google Scholar 

  • Kumar PS, Varjani SJ, Suganya S (2018b) Treatment of dye wastewater using an ultrasonic aided nanoparticle stacked activated carbon: kinetic and isotherm modelling. Biores Technol 250:716–722

    Article  Google Scholar 

  • Kumpiene J, Ore S, Renella G, Mench M, Lagerkvist A, Maurice C (2006) Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ Pollut 144(1):62–69

    Article  CAS  PubMed  Google Scholar 

  • Lahiani MH, Dervishi E, Ivanov I, Chen J, Khodakovskaya M (2016) Comparative study of plant responses to carbon-based nanomaterials with different morphologies. Nanotechnology 27(26):265102

    Article  PubMed  Google Scholar 

  • Lamichhane JR, Debaeke P, Steinberg C, You MP, Barbetti MJ, Aubertot J-N (2018) Abiotic and biotic factors affecting crop seed germination and seedling emergence: a conceptual framework. Plant Soil 432(1):1–28

    Article  CAS  Google Scholar 

  • Lao CS, Park M-C, Kuang Q, Deng Y, Sood AK, Polla DL, Wang ZL (2007) Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization. J Am Chem Soc 129(40):12096–12097

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol 158(6):737–745

    Article  CAS  Google Scholar 

  • Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV–B radiation. Biol Trace Elem Res 121(1):69–79

    Article  PubMed  Google Scholar 

  • Li Z, Huang J (2014) Effects of nanoparticle hydroxyapatite on growth and antioxidant system in pakchoi (Brassica chinensis L.) from cadmium-contaminated soil. J Nanomater. https://doi.org/10.1155/2014/470962

    Article  Google Scholar 

  • Li H, Huang J, Lu F, Liu Y, Song Y, Sun Y, Zhong J, Huang H, Wang Y, Li S (2018a) Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Appl Bio Mater 1(3):663–672

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X (2018b) Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47(7):2322–2356

    Article  CAS  PubMed  Google Scholar 

  • Lian J, Zhao L, Wu J, Xiong H, Bao Y, Zeb A, Tang J, Liu W (2020) Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere 239:124794

    Article  CAS  PubMed  Google Scholar 

  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495(1):286–291

    Article  CAS  PubMed  Google Scholar 

  • Linkemer G, Board JE, Musgrave ME (1998) Waterlogging effects on growth and yield components in late-planted soybean. Crop Sci 38(6):1576–1584

    Article  CAS  PubMed  Google Scholar 

  • Lipșa F-D, Ursu E-L, Ursu C, Ulea E, Cazacu A (2020) Evaluation of the antifungal activity of gold-chitosan and carbon nanoparticles on Fusarium oxysporum. Agronomy 10(8):1143

    Article  Google Scholar 

  • Liu Z, Liang XJ (2012) Nano-carbons as theranostics. Theranostics 2(3):235–237. https://doi.org/10.7150/thno.4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Qi M, Li T (2012) Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Sci 196:8–17

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227(1):42

    Article  Google Scholar 

  • Liu Y, Li A, Xie G, Liu G, Hei X (2021) Computational methods and online resources for identification of piRNA-related molecules. Interdiscip Sci Comput Life Sci 13:176–191

    Article  CAS  Google Scholar 

  • Lowry GV, Avellan A, Gilbertson LM (2019) Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat Nanotechnol 14(6):517–522

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Ma C, White JC, Dhankher OP, Xing B (2015) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49(12):7109–7122

    Article  CAS  PubMed  Google Scholar 

  • Mackerness SA, John CF, Jordan B, Thomas B (2001) Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489(2–3):237–242. https://doi.org/10.1016/S0014-5793(01)02103-2

    Article  CAS  Google Scholar 

  • Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7(1):1–21

    Article  CAS  Google Scholar 

  • Maisa’a W, Awwad AM (2021) A novel route for the synthesis of copper oxide nanoparticles using Bougainvillea plant flowers extract and antifungal activity evaluation. Chem Int 7(1):71–78

    Google Scholar 

  • Manikandaselvi S, Sathya V, Vadivel V, Sampath N, Brindha P (2020) Evaluation of bio control potential of AgNPs synthesized from Trichoderma viride. Adv Nat Sci Nanosci Nanotechnol 11(3):035004

    Article  CAS  Google Scholar 

  • Mansoor N, Younus A, Jamil Y, Shahid M (2019) Impact of nanosized and bulk ZnO on germination and early growth response of Triticum aestivum. Pak J Agric Sci 56(4):879–884

    Google Scholar 

  • Martínez-Fernández D, Barroso D, Komárek M (2016) Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ Sci Pollut Res 23(2):1732–1741

    Article  Google Scholar 

  • Masum M, Islam M, Siddiqa M, Ali KA, Zhang Y, Abdallah Y, Ibrahim E, Qiu W, Yan C, Li B (2019) Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Front Microbiol 10:820

    Article  PubMed  PubMed Central  Google Scholar 

  • Matoh T, Watanabe J, Takahashi E (1987) Sodium, potassium, chloride, and betaine concentrations in isolated vacuoles from salt-grown Atriplex gmelini leaves. Plant Physiol 84(1):173–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKee MS, Filser J (2016) Impacts of metal-based engineered nanomaterials on soil communities. Environ Sci Nano 3(3):506–533

    Article  CAS  Google Scholar 

  • Mehrian SK, Heidari R, Rahmani F, Najafi S (2016) Effect of chemical synthesis silver nanoparticles on germination indices and seedlings growth in seven varieties of Lycopersicon esculentum Mill (tomato) plants. J Cluster Sci 27(1):327–340

    Article  Google Scholar 

  • Mehta C, Srivastava R, Arora S, Sharma A (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6(2):254

    PubMed  PubMed Central  Google Scholar 

  • Meyyappan M, Delzeit L, Cassell A, Hash D (2003) Carbon nanotube growth by PECVD: a review. Plasma Sources Sci Technol 12(2):205

    Article  CAS  Google Scholar 

  • Mikušová V, Lukačovičová O, Havránek E, Mikuš P (2014) Radionuclide X-ray fluorescence analysis of selected elements in drug samples with 8-hydroxyquinoline preconcentration. J Radioanal Nucl Chem 299(3):1645–1652

    Article  Google Scholar 

  • Milewska-Hendel A, Zubko M, Stróż D, Kurczyńska EU (2019) Effect of nanoparticles surface charge on the Arabidopsis thaliana (L.) roots development and their movement into the root cells and protoplasts. Int J Mol Sci 20(7):1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mingyu S, Xiao W, Chao L, Chunxiang Q, Xiaoqing L, Liang C, Hao H, Fashui H (2007) Promotion of energy transfer and oxygen evolution in spinach photosystem II by nano-anatase TiO2. Biol Trace Elem Res 119(2):183–192

    Article  Google Scholar 

  • Minju N, Venkat Swaroop K, Haribabu K, Sivasubramanian V, Senthil Kumar P (2015) Removal of fluoride from aqueous media by magnesium oxide-coated nanoparticles. Desalin Water Treat 53(11):2905–2914

    Article  CAS  Google Scholar 

  • Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46(17):9224–9239

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi R, Maali-Amiri R, Abbasi A (2013) Effect of TiO2 nanoparticles on chickpea response to cold stress. Biol Trace Elem Res 152(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi R, Maali-Amiri R, Mantri N (2014) Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russ J Plant Physiol 61(6):768–775

    Article  CAS  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  Google Scholar 

  • Montaña M, Camacho A, Serrano I, Devesa R, Matia L, Vallés I (2013) Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal. J Environ Radioact 125:86–92

    Article  PubMed  Google Scholar 

  • Moradian F, Ghorbani R, Biparva P (2018) Assessment of Different antibacterial effects of Fe and Cu nanoparticles on Xanthomonas campestris growth and expression of its pathogenic gene hrpE. J Agric Sci Technol 20(5):1059–1070

    Google Scholar 

  • Movafeghi A, Khataee A, Abedi M, Tarrahi R, Dadpour M, Vafaei F (2018) Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza: evaluation of growth parameters, pigment contents and antioxidant enzyme activities. J Environ Sci 64:130–138

    Article  CAS  Google Scholar 

  • Munir T, Rizwan M, Kashif M, Shahzad A, Ali S, Amin N, Zahid R, Alam M, Imran M (2018) Effect of zinc oxide nanoparticles on the growth and Zn uptake in wheat (Triticum aestivum L.) by seed priming method. Digest J Nanomater Biostruct (DJNB) 13(1):315–323

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Mustafa G, Sakata K, Hossain Z, Komatsu S (2015a) Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J Proteomics 122:100–118

    Article  CAS  PubMed  Google Scholar 

  • Mustafa G, Sakata K, Komatsu S (2015b) Proteomic analysis of flooded soybean root exposed to aluminum oxide nanoparticles. J Proteomics 128:280–297

    Article  CAS  PubMed  Google Scholar 

  • Muszyńska E, Hanus-Fajerska E, Ciarkowska K (2018) Studies on lead and cadmium toxicity in Dianthus carthusianorum calamine ecotype cultivated in vitro. Plant Biol 20(3):474–482

    Article  PubMed  Google Scholar 

  • Nabulo G, Black C, Young S (2011) Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge. Environ Pollut 159(2):368–376

    Article  CAS  PubMed  Google Scholar 

  • Nair R (2016) Effects of nanoparticles on plant growth and development. Plant nanotechnology. Springer, Cham, pp 95–118

    Chapter  Google Scholar 

  • Narendhran S, Rajiv P, Sivaraj R (2016) Toxicity of ZnO nanoparticles on germinating Sesamum indicum (Co-1) and their antibacterial activity. Bull Mater Sci 39(2):415–421

    Article  CAS  Google Scholar 

  • Neeraj G, Krishnan S, Kumar PS, Shriaishvarya KR, Kumar VV (2016) Performance study on sequestration of copper ions from contaminated water using newly synthesized high effective chitosan coated magnetic nanoparticles. J Mol Liq 214:335–346

    Article  CAS  Google Scholar 

  • Nikazar S, Barani M, Rahdar A, Zoghi M, Kyzas GZ (2020) Photo-and magnetothermally responsive nanomaterials for therapy, controlled drug delivery and imaging applications. ChemistrySelect 5(40):12590–12609

    Article  CAS  Google Scholar 

  • Noman M, Shahid M, Ahmed T, Tahir M, Naqqash T, Muhammad S, Song F, Abid HMA, Aslam Z (2020) Green copper nanoparticles from a native Klebsiella pneumoniae strain alleviated oxidative stress impairment of wheat plants by reducing the chromium bioavailability and increasing the growth. Ecotoxicol Environ Safety 192:110303

    Article  CAS  PubMed  Google Scholar 

  • Nriagu JO, Nieboer E (1988) Chromium in the natural and human environments, vol 20. Wiley, Hoboken

    Google Scholar 

  • Obroucheva NV (2013) Aquaporins in seeds. Seed Sci Res 23(4):213–216

    Article  Google Scholar 

  • Ogunyemi SO, Abdallah Y, Zhang M, Fouad H, Hong X, Ibrahim E, Masum MMI, Hossain A, Mo J, Li B (2019) Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif Cells Nanomed Biotechnol 47(1):341–352

    Article  CAS  PubMed  Google Scholar 

  • Okey-Onyesolu CF, Hassanisaadi M, Bilal M, Barani M, Rahdar A, Iqbal J, Kyzas GZ (2021) Nanomaterials as nanofertilizers and nanopesticides: an overview. ChemistrySelect 6(33):8645–8663

    Article  CAS  Google Scholar 

  • Oloumi H, Mousavi EA, Nejad RM (2018) Multi-wall carbon nanotubes effects on plant seedlings growth and cadmium/lead uptake in vitro. Russ J Plant Physiol 65(2):260–268

    Article  CAS  Google Scholar 

  • Osonga FJ, Akgul A, Yazgan I, Akgul A, Eshun GB, Sakhaee L, Sadik OA (2020) Size and shape-dependent antimicrobial activities of silver and gold nanoparticles: a model study as potential fungicides. Molecules 25(11):2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmqvist NM, Seisenbaeva GA, Svedlindh P, Kessler VG (2017) Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus. Nanoscale Res Lett 12(1):1–9

    Article  CAS  Google Scholar 

  • Panáček A, Kvitek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Tj N, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253

    Article  PubMed  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22(6):4056–4075

    Article  CAS  Google Scholar 

  • Pariona N, Martínez AI, Hernandez-Flores H, Clark-Tapia R (2017) Effect of magnetite nanoparticles on the germination and early growth of Quercus macdougallii. Sci Total Environ 575:869–875

    Article  CAS  PubMed  Google Scholar 

  • Parveen A, Mazhari BBZ, Rao S (2016) Impact of bio-nanogold on seed germination and seedling growth in Pennisetum glaucum. Enzyme Microb Technol 95:107–111

    Article  CAS  PubMed  Google Scholar 

  • Parveen S, Wani AH, Shah MA, Devi HS, Bhat MY, Koka JA (2018) Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb Pathog 115:287–292

    Article  CAS  PubMed  Google Scholar 

  • Patra A, Adhikari T, Bhardwaj A (2016) Enhancing crop productivity in salt-affected environments by stimulating soil biological processes and remediation using nanotechnology. Innovative saline agriculture. Springer, New Delhi, pp 83–103

    Chapter  Google Scholar 

  • Pierart A, Shahid M, Séjalon-Delmas N, Dumat C (2015) Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J Hazard Mater 289:219–234

    Article  CAS  PubMed  Google Scholar 

  • Pillai AM, Sivasankarapillai VS, Rahdar A, Joseph J, Sadeghfar F, Rajesh K, Kyzas GZ (2020) Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J Mol Struct 1211:128107

    Article  CAS  Google Scholar 

  • Pourrut B, Jean S, Silvestre J, Pinelli E (2011) Lead-induced DNA damage in Vicia faba root cells: potential involvement of oxidative stress. Mutation Res/Genet Toxicol Environ Mutagenesis 726(2):123–128

    Article  CAS  Google Scholar 

  • Pradhan S, Barik S, Goswami A (2019) Assessment of photo-modulation, nutrient-use efficiency and toxicity of iron nanoparticles in Vigna radiata. Environ Sci Nano 6(8):2544–2552

    Article  CAS  Google Scholar 

  • Prasad P, Pisipati S, Momčilović I, Ristic Z (2011) Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J Agron Crop Sci 197(6):430–441

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis? Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(2):316–330

    Article  PubMed  Google Scholar 

  • Prażak R, Święciło A, Krzepiłko A, Michałek S, Arczewska M (2020) Impact of Ag nanoparticles on seed germination and seedling growth of green beans in normal and chill temperatures. Agriculture 10(8):1–1

    Article  Google Scholar 

  • Qados AMA (2015) Mechanism of nanosilicon-mediated alleviation of salinity stress in faba bean (Vicia faba L.) plants. J Exp Agric Int 7:78–95

    Google Scholar 

  • Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156(1):323–328

    Article  CAS  PubMed  Google Scholar 

  • Radchenko V, Engle JW, Wilson JJ, Maassen JR, Nortier FM, Taylor WA, Birnbaum ER, Hudston LA, John KD, Fassbender ME (2015) Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes. J Chromatogr A 1380:55–63

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M (2014) Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol 98(5):1951–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi A, Zivcak M, Tripathi D, Yadav S, Kalaji H, Brestic M (2019) Phytotoxic effect of silver nanoparticles in Triticum aestivum: improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica 57(1):209–216

    Article  CAS  Google Scholar 

  • Regier N, Cosio C, von Moos N, Slaveykova VI (2015) Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere 128:56–61

    Article  CAS  PubMed  Google Scholar 

  • Renzi DF, Campos LdA, Miranda EH, Mainardes RM, Abraham W-R, Grigoletto DF, Khalil NM (2020) Nanoparticles as a tool for broadening antifungal activities. Curr Med Chem 28(9):1841–1873

    Article  Google Scholar 

  • Rezvani N, Sorooshzadeh A, Farhadi N (2012) Effect of nano-silver on growth of saffron in flooding stress. World Acad Sci Eng Technol 6(1):517–522

    Google Scholar 

  • Rico C, Peralta-Videa J, Gardea-Torresdey J (2015) Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. Nanotechnology and plant sciences. Springer, Cham, pp 1–17

    Google Scholar 

  • Roghani A (2021) The influence of Covid-19 vaccine on daily cases, hospitalization, and death rate in Tennessee: a case study in the United States. medRxiv

  • Sabaghnia N (2015) Janmohammadi M Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes. Ann Univ Mariae Curie-Sklodowska, Sectio C-Biol 2:39

    Google Scholar 

  • Sadak MS (2019) Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bull Nat Res Centre 43(1):1–6

    Article  Google Scholar 

  • Saffari M (2018) Chemical stabilization of some heavy metals in an artificially multi-elements contaminated soil, using rice husk biochar and coal fly ash. Pollution 4(4):547–562

    CAS  Google Scholar 

  • Saffari M, Karimian N, Ronaghi A, Yasrebi J, Ghasemi-Fasaei R (2016) Stabilization of lead as affected by various amendments and incubation time in a calcareous soil. Arch Agron Soil Sci 62(3):317–337

    Article  CAS  Google Scholar 

  • Safikhan S, Chaichi MR, Khoshbakht K, Amini A, Motesharezadeh B (2018) Application of nanomaterial graphene oxide on biochemical traits of milk thistle (Silybum marianum L.) under salinity stress. Aust J Crop Sci 12(6):931–936

    Article  CAS  Google Scholar 

  • Sahayaraj K, Madasamy M, Radhika SA (2016) Insecticidal activity of bio-silver and gold nanoparticles against Pericallia ricini Fab. (Lepidaptera: Archidae). J Biopestic 9(1):63

    Article  CAS  Google Scholar 

  • Salachna P, Byczyńska A, Zawadzińska A, Piechocki R, Mizielińska M (2019) Stimulatory effect of silver nanoparticles on the growth and flowering of potted oriental lilies. Agronomy 9(10):610

    Article  CAS  Google Scholar 

  • Saleh A (2007) Influence of UV A+ B radiation and heavy metals on growth, some metabolic activities and antioxidant system in pea (Pisum sativum) plant. Acta Bot Hungar 49(3–4):401–422

    Article  CAS  Google Scholar 

  • Salla V, Hardaway CJ, Sneddon J (2011) Preliminary investigation of Spartina alterniflora for phytoextraction of selected heavy metals in soils from Southwest Louisiana. Microchem J 97(2):207–212

    Article  CAS  Google Scholar 

  • Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    Article  CAS  Google Scholar 

  • Saqib S, Zaman W, Ullah F, Majeed I, Ayaz A, Hussain Munis MF (2019) Organometallic assembling of chitosan-Iron oxide nanoparticles with their antifungal evaluation against Rhizopus oryzae. Appl Organomet Chem 33(11):e5190

    Article  CAS  Google Scholar 

  • Sargazi G, Afzali D, Mostafavi A, Shadman A, Rezaee B, Zarrintaj P, Saeb MR, Ramakrishna S, Mozafari M (2019a) Chitosan/polyvinyl alcohol nanofibrous membranes: towards green super-adsorbents for toxic gases. Heliyon 5(4):e01527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sargazi G, Ebrahimi AK, Afzali D, Badoei-dalfard A, Malekabadi S, Karami Z (2019b) Fabrication of PVA/ZnO fibrous composite polymer as a novel sorbent for arsenic removal: design and a systematic study. Polym Bull 76(11):5661–5682

    Article  CAS  Google Scholar 

  • Savicka M, Škute N (2010) Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija 56(1):26–33

    Article  CAS  Google Scholar 

  • Savidge RA (1996) Xylogenesis, genetic and environmental regulation—a review. IAWA J 17(3):269–310

    Article  Google Scholar 

  • Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93(10):1415–1425

    Article  PubMed  Google Scholar 

  • Schulze E, Beck E, Müller-Hohenstein K, Schulze E, Beck E, Müller-Hohenstein K (2005) Stress physiology. Plant ecology. Springer, Berlin, Heidelberg, New York, pp 5–250

    Google Scholar 

  • Seddighinia FS, Iranbakhsh A, Ardebili ZO, Satari TN, Soleimanpour S (2020) Seed priming with cold plasma and multi-walled carbon nanotubes modified growth, tissue differentiation, anatomy, and yield in bitter melon (Momordica charantia). J Plant Growth Regul 39(1):87–98

    Article  CAS  Google Scholar 

  • Seghatoleslami M, Feizi H, Mousavi G, Berahmand A (2015) Effect of magnetic field and silver nanoparticles on yield and water use efficiency of Carum copticum under water stress conditions. Pol J Chem Technol 17(1):110–114

    Article  CAS  Google Scholar 

  • Sengupta J, Ghosh S, Datta P, Gomes A, Gomes A (2014) Physiologically important metal nanoparticles and their toxicity. J Nanosci Nanotechnol 14(1):990–1006

    Article  CAS  PubMed  Google Scholar 

  • Sha R, Badhulika S (2020) Recent advancements in fabrication of nanomaterial based biosensors for diagnosis of ovarian cancer: a comprehensive review. Microchim Acta 187(3):1–15

    Article  Google Scholar 

  • Shabnam N, Pardha-Saradhi P, Sharmila P (2014) Phenolics impart Au3+-stress tolerance to cowpea by generating nanoparticles. PLoS One 9(1):e85242

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2015) Heavy metal stress and crop productivity. Crop production and global environmental issues. Springer, Cham, pp 1–25

    Google Scholar 

  • Shaker A, Zaki A, Abdel-Rahim E, Khedr M (2017) TiO2 nanoparticles as an effective nanopesticide for cotton leaf worm. Agric Eng Int CIGR J, Special (61–68)

  • Shallan MA, Hassan HM, Namich AA, Ibrahim AA (2016) Biochemical and physiological effects of TiO2 and SiO2 nanoparticles on cotton plant under drought stress. Res J Pharm Biol Chem Sci 7(4):1540–1551

    CAS  Google Scholar 

  • Shen X, Zhou Y, Duan L, Li Z, Eneji AE, Li J (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol 167(15):1248–1252

    Article  CAS  PubMed  Google Scholar 

  • Shende S, Rathod D, Gade A, Rai M (2017) Biogenic copper nanoparticles promote the growth of pigeon pea (Cajanus cajan L.). IET Nanobiotechnol 11(7):773–781

    Article  PubMed Central  Google Scholar 

  • Shi H-S, Kan L-L (2009) Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete. J Hazard Mater 164(2–3):750–754

    Article  CAS  PubMed  Google Scholar 

  • Shilova OA, Panova G, Nikolaev A, Kovalenko A, Sinelnikov A, Kopitsa G, Baranchikov A, Udalova O, Artemyeva A, Kornyuchin D (2020) Aqueous chemical co-precipitation of iron oxide magnetic nanoparticles for use in agricultural technologies. Lett Appl NanoBioSci 10(2):2215

    Article  Google Scholar 

  • Shinde S, Paralikar P, Ingle AP, Rai M (2020) Promotion of seed germination and seedling growth of Zea mays by magnesium hydroxide nanoparticles synthesized by the filtrate from Aspergillus niger. Arab J Chem 13(1):3172–3182

    Article  CAS  Google Scholar 

  • Shukla G, Gaurav SS, Singh A (2020) Synthesis of mycogenic zinc oxide nanoparticles and preliminary determination of its efficacy as a larvicide against white grubs (Holotrichia sp.). Int Nano Lett 10:131–139

    Article  CAS  Google Scholar 

  • Shvedova AA, Kagan VE, Fadeel B (2010) Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu Rev Pharmacol Toxicol 50:63–88

    Article  CAS  PubMed  Google Scholar 

  • Sicard C, Perullini M, Spedalieri C, Coradin T, Brayner R, Livage J, Jobbágy M, Bilmes SA (2011) CeO2 nanoparticles for the protection of photosynthetic organisms immobilized in silica gels. Chem Mater 23(6):1374–1378

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33(11):2429–2437

    Article  CAS  PubMed  Google Scholar 

  • Silva S, Ribeiro TP, Santos C, Pinto DC, Silva AM (2020) TiO2 nanoparticles induced sugar impairments and metabolic pathway shift towards amino acid metabolism in wheat. J Hazardous Mater 399:122982

    Article  CAS  Google Scholar 

  • Sima X-F, Shen X-C, Fang T, Yu H-Q, Jiang H (2017) Efficiently reducing the plant growth inhibition of CuO NPs using rice husk-derived biochar: experimental demonstration and mechanism investigation. Environ Sci Nano 4(8):1722–1732

    Article  CAS  Google Scholar 

  • Singh S, Husen A (2019) Role of nanomaterials in the mitigation of abiotic stress in plants. Nanomaterials and plant potential. Springer, Cham, pp 441–471

    Chapter  Google Scholar 

  • Singh J, Lee B-K (2016) Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. J Environ Manag 170:88–96

    Article  CAS  Google Scholar 

  • Singh A, Rathod V, Singh D, Mathew J, Kulkarni P (2016) Effect of silver nanoparticles (AgNps) produced by an endophytic fungus Fusarium semitectum isolated from a medicinal plant Withania Somnifera (Ashwagandha) on seed germination. Int J Res Stud Agric Sci 2:6–12

    Google Scholar 

  • Singh AP, Biswas A, Shukla A, Maiti P (2019) Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther 4(1):1–21

    CAS  Google Scholar 

  • Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7(2):36–47

    Article  CAS  Google Scholar 

  • Soltani E, Soltani A (2015) Meta-analysis of seed priming effects on seed germination, seedling emergence and crop yield: Iranian studies. Int J Plant Prod 9(3):413–432

    Google Scholar 

  • Song G, Hou W, Gao Y, Wang Y, Lin L, Zhang Z, Niu Q, Ma R, Mu L, Wang H (2016) Effects of CuO nanoparticles on Lemna minor. Bot Stud 57(1):1–8

    Article  Google Scholar 

  • Song S, Zhang S, Huang S, Zhang R, Yin L, Hu Y, Wen T, Zhuang L, Hu B, Wang X (2019) A novel multi-shelled Fe3O4@ MnOx hollow microspheres for immobilizing U (VI) and Eu (III). Chem Eng J 355:697–709

    Article  CAS  Google Scholar 

  • Sugai T, Kam D-G, Agathokleous E, Watanabe M, Kita K, Koike T (2018) Growth and photosynthetic response of two larches exposed to O3 mixing ratios ranging from preindustrial to near future. Photosynthetica 56(3):901–910

    Article  CAS  Google Scholar 

  • Sui M, Li C, Wu W, Yang M, Ali HM, Zhang Y, Jia D, Hou Y, Li R, Cao H (2021) Temperature of grinding carbide with castor oil-based MoS2 nanofluid minimum quantity lubrication. J Thermal Sci Eng Appl 13(5):051001

    Article  CAS  Google Scholar 

  • Sun D, Hussain HI, Yi Z, Rookes JE, Kong L, Cahill DM (2016) Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 152:81–91

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Nagasuga K, Okada M (2008) The chilling injury induced by high root temperature in the leaves of rice seedlings. Plant Cell Physiol 49(3):433–442

    Article  CAS  PubMed  Google Scholar 

  • Syu Y-y, Hung J-H, Chen J-C, Chuang H-w (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64

    Article  CAS  PubMed  Google Scholar 

  • Szőllősi R, Molnár Á, Kondak S, Kolbert Z (2020) Dual effect of nanomaterials on germination and seedling growth: stimulation vs. phytotoxicity. Plants 9(12):1745

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang X, Mu X, Shao H, Wang H, Brestic M (2015) Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35(4):425–437

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar J, Xiang Y, Wang W-N, Dong Q, Biswas P (2012) Standardization of size, shape and concentration of nanoparticle for plant application. Appl Biol Res 14:138–144

    Google Scholar 

  • Thunugunta T, Reddy AC, Seetharamaiah SK, Hunashikatti LR, Chandrappa SG, Kalathil NC, Reddy LRDC (2018) Impact of Zinc oxide nanoparticles on eggplant (S. melongena): studies on growth and the accumulation of nanoparticles. IET Nanobiotechnol 12(6):706–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Tombuloglu H, Tombuloglu G, Slimani Y, Ercan I, Sozeri H, Baykal A (2018) Impact of manganese ferrite (MnFe2O4) nanoparticles on growth and magnetic character of barley (Hordeum vulgare L.). Environ Pollut 243:872–881

    Article  CAS  PubMed  Google Scholar 

  • Tombuloglu H, Slimani Y, Tombuloglu G, Almessiere M, Baykal A (2019) Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.). Chemosphere 226:110–122

    Article  CAS  PubMed  Google Scholar 

  • Torabian S, Zahedi M, Khoshgoftar AH (2016) Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J Plant Nutr 39(2):172–180

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017a) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Tripathi A, Singh S, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay R (2017b) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:7

    Article  Google Scholar 

  • Tripathi KM, Bhati A, Singh A, Sonker AK, Sarkar S, Sonkar SK (2017c) Sustainable changes in the contents of metallic micronutrients in first generation gram seeds imposed by carbon nano-onions: life cycle seed to seed study. ACS Sustain Chem Eng 5(4):2906–2916

    Article  CAS  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7(12):1621–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo-Navarrete B, del Pilar Haro-Vázquez M, Félix-Navarro RM, Paraguay-Delgado F, Alvarez-Huerta H, Pérez-Sicairos S, Reynoso-Soto EA (2017) Effect of Nd3+ doping on structure, microstructure, lattice distortion and electronic properties of TiO2 nanoparticles. J Rare Earths 35(3):259–270

    Article  CAS  Google Scholar 

  • Tymoszuk A, Wojnarowicz J (2020) Zinc oxide and zinc oxide nanoparticles impact on in vitro germination and seedling growth in Allium cepa L. Materials 13(12):2784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uzu G, Sauvain J-J, Baeza-Squiban A, Riediker M, Sánchez Sandoval Hohl M, Val S, Tack K, Denys S, Pradère P, Dumat C (2011) In vitro assessment of the pulmonary toxicity and gastric availability of lead-rich particles from a lead recycling plant. Environ Sci Technol 45(18):7888–7895

    Article  CAS  Google Scholar 

  • Vargas-Hernandez M, Macias-Bobadilla I, Guevara-Gonzalez RG, Romero-Gomez SdJ, Rico-Garcia E, Ocampo-Velazquez RV, Alvarez-Arquieta LdL, Torres-Pacheco I (2017) Plant hormesis management with biostimulants of biotic origin in agriculture. Front Plant Sci 8:1762

    Article  PubMed  PubMed Central  Google Scholar 

  • Velmurugan N, Kumar GG, Han SS, Nahm KS, Lee YS (2009) Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles. Iran Polym J 18:383–392

    CAS  Google Scholar 

  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya R, Tiwari M, Sharma N (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Nizam S, Verma PK (2013) Biotic and abiotic stress signaling in plants. Stress signaling in plants: genomics and proteomics perspective, vol 1. Springer, New York, pp 25–49

    Chapter  Google Scholar 

  • Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S (2018) Engineered nanomaterials for plant growth and development: a perspective analysis. Sci Total Environ 630:1413–1435

    Article  CAS  PubMed  Google Scholar 

  • Vilardi G, Verdone N, Di Palma L (2017) The influence of nitrate on the reduction of hexavalent chromium by zero-valent iron nanoparticles in polluted wastewater. Desalin Water Treat 86:252–258

    Article  CAS  Google Scholar 

  • Vishwakarma K, Upadhyay N, Singh J, Liu S, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2017) Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci 8:1501

    Article  PubMed  PubMed Central  Google Scholar 

  • Visser E, Nabben R, Blom C, Voesenek L (1997) Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentrations. Plant Cell Environ 20(5):647–653

    Article  CAS  Google Scholar 

  • Wagi S, Ahmed A (2019) Green production of AgNPs and their phytostimulatory impact. Green Process Synth 8(1):885–894

    Article  CAS  Google Scholar 

  • Wahid A (2007) Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. J Plant Res 120(2):219–228

    Article  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46(8):4434–4441

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Yang C, Duan C, Xiao D, Tang Y, Zhu J (2014a) An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor. J Electrochem Soc 162(1):B16

    Article  Google Scholar 

  • Wang X, Liu X, Chen J, Han H, Yuan Z (2014b) Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon 68:798–806

    Article  CAS  Google Scholar 

  • Wang P, Lombi E, Zhao F-J, Kopittke PM (2016a) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(8):699–712

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hu J, Dai Z, Li J, Huang J (2016b) In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure. Plant Physiol Biochem 108:353–360

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li C, Zhang Y, Yang M, Li B, Jia D, Hou Y, Mao C (2016c) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. J Clean Prod 127:487–499

    Article  CAS  Google Scholar 

  • Wang X, Zhou Z, Chen F (2017) Surface modification of carbon nanotubes with an enhanced antifungal activity for the control of plant fungal pathogen. Materials 10(12):1375

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Li C, Zhang Y, Ding W, Yang M, Gao T, Cao H, Xu X, Wang D, Said Z (2020) Vegetable oil-based nanofluid minimum quantity lubrication turning: academic review and perspectives. J Manuf Process 59:76–97

    Article  Google Scholar 

  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou H-E, Rajashekar C, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses: role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277(35):31994–32002

    Article  CAS  PubMed  Google Scholar 

  • Wenli S, Shahrajabian MH, Huang Q (2020) Soybean seeds treated with single walled carbon nanotubes (SwCNTs) showed enhanced drought tolerance during germination. Int J Adv Biol Biomed Res 8:9–16

    Article  Google Scholar 

  • Wu M, Luo Q, Zhao Y, Long Y, Liu S, Pan Y (2018) Physiological and biochemical mechanisms preventing Cd toxicity in the new hyperaccumulator Abelmoschus manihot. J Plant Growth Regul 37(3):709–718

    Article  CAS  Google Scholar 

  • Wu F, Fang Q, Yan S, Pan L, Tang X, Ye W (2020a) Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): germination, early growth, and arsenic uptake. Environ Sci Pollut Res Int 27:26974–26981

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang G, Vijver MG, Bosker T, Peijnenburg WJ (2020b) Foliar versus root exposure of AgNPs to lettuce: phytotoxicity, antioxidant responses and internal translocation. Environ Pollut 261:114117

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25(2):131–139

    Article  CAS  PubMed  Google Scholar 

  • Xiong T, Leveque T, Shahid M, Foucault Y, Mombo S, Dumat C (2014) Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. J Environ Qual 43(5):1593–1600

    Article  PubMed  Google Scholar 

  • Xu J, Yang J, Duan X, Jiang Y, Zhang P (2014) Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biol 14(1):1–14

    Article  CAS  Google Scholar 

  • Yakimova R, Selegård L, Khranovskyy V, Pearce R, Lloyd Spetz A, Uvdal K (2012) ZnO materials and surface tailoring for biosensing. Front Biosci (elite Ed) 4(1):254–278

    Article  PubMed  Google Scholar 

  • Yang X, Liu J, McGrouther K, Huang H, Lu K, Guo X, He L, Lin X, Che L, Ye Z (2016) Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res 23(2):974–984

    Article  CAS  Google Scholar 

  • Yin L, Song S, Wang X, Niu F, Ma R, Yu S, Wen T, Chen Y, Hayat T, Alsaedi A (2018) Rationally designed core-shell and yolk-shell magnetic titanate nanosheets for efficient U (VI) adsorption performance. Environ Pollut 238:725–738

    Article  CAS  PubMed  Google Scholar 

  • Yin Q, Li C, Dong L, Bai X, Zhang Y, Yang M, Jia D, Li R, Liu Z (2021) Effects of physicochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045. Int J Precis Eng Manuf-Green Technol 8:1629–1647

    Article  Google Scholar 

  • Yordanova R, Popova L (2007) Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. Gen Appl Plant Physiol 33(3–4):155–170

    CAS  Google Scholar 

  • Yousefi S, Kartoolinejad D, Naghdi R (2017) Effects of priming with multi-walled carbon nanotubes on seed physiological characteristics of Hopbush (Dodonaea viscosa L.) under drought stress. Int J Environ Stud 74(4):528–539

    Article  CAS  Google Scholar 

  • Youssef MS, Elamawi RM (2020) Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in Vicia faba. Environ Sci Pollut Res 27(16):18972–18984

    Article  CAS  Google Scholar 

  • Yu S, Wang X, Tan X, Wang X (2015) Sorption of radionuclides from aqueous systems onto graphene oxide-based materials: a review. Inorg Chem Front 2(7):593–612

    Article  CAS  Google Scholar 

  • Yuan F (2013) The researches about the behavior of cadmium and lead in the water environment. Northern Environment

  • Zafar H, Ali A, Ali JS, Haq IU, Zia M (2016) Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front Plant Sci 7:535

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarnab F, Rimsha T, Mirza AQ, Hafiza TG, Hafiz NF (2019) Evaluation of toxicity of nanoparticles against Bactrocera zonata as bio-control agent. Agric Sci J 1(1):25–33

    Article  Google Scholar 

  • Ze Y, Liu C, Wang L, Hong M, Hong F (2011) The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol Trace Elem Res 143(2):1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang Y (2021) Experimental study on enhanced heat transfer and flow performance of magnetic nanofluids under alternating magnetic field. Int J Thermal Sci 164:106897

    Article  CAS  Google Scholar 

  • Zhang X, Zhang Y (2021) Heat transfer and flow characteristics of Fe3O4-water nanofluids under magnetic excitation. Int J Thermal Sci 163:106826

    Article  CAS  Google Scholar 

  • Zhang P, Ma Y, Zhang Z (2015a) Interactions between engineered nanomaterials and plants: phytotoxicity, uptake, translocation, and biotransformation. Nanotechnology and plant sciences. Springer, Cham, pp 77–99

    Chapter  Google Scholar 

  • Zhang Y, Li C, Jia D, Zhang D, Zhang X (2015b) Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil. J Clean Prod 87:930–940

    Article  CAS  Google Scholar 

  • Zhang H, Lu L, Zhao X, Zhao S, Gu X, Du W, Wei H, Ji R, Zhao L (2019) Metabolomics reveals the “invisible” responses of spinach plants exposed to CeO2 nanoparticles. Environ Sci Technol 53(10):6007–6017

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Hu Y, Liu J, Wang H, Wei J, Sun P, Wu L, Zheng H (2020) Progress of ethylene action mechanism and its application on plant type formation in crops. Saudi J Biol Sci 27(6):1667–1673

    Article  CAS  PubMed Central  Google Scholar 

  • Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR, Tang X, Niu G, Jin L, Varela-Ramirez A (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6(11):9615–9622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Lu L, Wang A, Zhang H, Huang M, Wu H, Xing B, Wang Z, Ji R (2020) Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J Agric Food Chem 68(7):1935–1947

    Article  CAS  PubMed  Google Scholar 

  • Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 50(14):7290–7304

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Methodology, MH, AR, MH, AT and GZK; writing—original draft preparation, MH, AR, MH, AT and GZK; writing—review and editing, MH, MB, AR, MH, AT and GZK; Supervision, AR and GZK. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Abbas Rahdar or George Z. Kyzas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Shubhpriya Gupta.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanisaadi, M., Barani, M., Rahdar, A. et al. Role of agrochemical-based nanomaterials in plants: biotic and abiotic stress with germination improvement of seeds. Plant Growth Regul 97, 375–418 (2022). https://doi.org/10.1007/s10725-021-00782-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-021-00782-w

Keywords

Navigation