Skip to main content
Log in

Regulatory functions and molecular mechanisms of ethylene receptors and receptor-associated proteins in higher plants

  • Review paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The gaseous plant hormone ethylene plays crucial roles in many aspects of plant growth, development and stress responses. Ethylene signaling is initiated upon its binding to the ethylene receptors. Since the cloning of the first ethylene receptor ETR1 from Arabidopsis, efforts have been made in elucidation of ethylene receptor organization, signaling, and receptor-interacting proteins in higher plants. However, the update information about the ethylene receptors, receptor interacting proteins and their regulatory functions and molecular mechanisms has not been well scrutinized and discussed. Critical questions regarding the confusing or contradictory responses and phenotypes have been barely answered. This article gave an overview of the current progress in the identification, regulatory functions and possible molecular mechanisms of the ethylene receptors and receptor-interacting proteins in ethylene signaling and responses. The novel findings of the crosstalk between ethylene signaling and the other plant hormones were integrated into the review article. Questions and future research directions about the key components in the regulation of ethylene signaling were also proposed and emphasized. The update message may greatly facilitate comprehensive understanding of the ethylene signaling and molecular regulations in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas M, Alabadi D, Blazquez MA (2013) Differential growth at the apical hook: all roads lead to auxin. Front Plant Sci 4:441

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams-Phillips L, Barry C, Kannan P, Leclercq J, Bouzayen M, Giovannoni J (2004) Evidence that CTR1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features. Plant Mol Biol 54:387–404

    Article  CAS  PubMed  Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    Article  CAS  PubMed  Google Scholar 

  • Argyros RD, Mathews DE, Chiang YH, Palmer CM, Thibault DM, Etheridge N, Argyros DA, Mason MG, Kieber JJ, Schaller GE (2008) Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell 20:2102–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakshi A, Wilson RL, Lacey RF, Kim H, Wuppalapati SK, Binder BM (2015) Identification of regions in the receiver domain of the ETHYLENE RESPONSE1 ethylene receptor of Arabidopsis important for functional divergence. Plant Physiol 169:219–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakshi A, Piya S, Fernandez JC, Chervin C, Hewezi T, Bindera BM (2018) Ethylene receptors signal via a noncanonical pathway to regulate abscisic acid responses. Plant Physiol 176:910–929

    Article  CAS  PubMed  Google Scholar 

  • Barry CS, Giovannoni JJ (2006) Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc Natl Acad Sci USA 103:7923–7928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berleth M, Berleth N, Minges A, Hansch S, Burkart RC, Stork B, Stahl Y, Weidtkamp-Peters S, Simon R, Groth G (2019) Molecular analysis of protein-protein interactions in the ethylene pathway in the different ethylene receptor subfamilies. Front Plant Sci 10:726

    Article  PubMed  PubMed Central  Google Scholar 

  • Beyer EM (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58:268–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bie B, Sun J, Pan J, He H, Cai R (2014) Ectopic expression of CsCTR1, a cucumber CTR-Like gene, attenuates constitutive ethylene signaling in an Arabidopsis ctr1-1 mutant and expression pattern analysis of CsCTR1 in Cucumber (Cucumis sativus). Int J Mol Sci 15:16331–16350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Binder BM, O’Malley RC, Wang W, Moore JM, Parks BM, Spalding EP, Bleecker AB (2004) Arabidopsis seedling growth response and recovery to ethylene. Akinetic analysis. Plant Physiol 136:2913–2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder BM, O’Malley RC, Wang W, Zutz TC, Bleecker AB (2006) Ethylene stimulates nutations that are dependent on the ETR1 receptor. Plant Physiol 142(2):1690–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder BM, Walker JM, Gagne JM, Emborg TJ, Hemmann G, Bleecker AB, Vierstra RD (2007) The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 19:509–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder BM, Rodriguez FI, Bleecker AB (2010) The copper transporter RAN1 is essential for biogenesis of ethylene receptors in Arabidopsis. J Biol Chem 48:37263–37270

    Article  CAS  Google Scholar 

  • Bisson MM, Groth G (2010) New insight in ethylene signaling: Autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Mol Plant 3:882–889

    Article  CAS  PubMed  Google Scholar 

  • Bisson MMA, Groth G (2015) Targeting plant ethylene responses by controlling essential protein-protein interactions in the ethylene pathway. Mol Plant 8:1165–1174

    Article  CAS  PubMed  Google Scholar 

  • Bisson MM, Kessenbrock M, Muller L, Hofmann A, Schmitz F, Cristescu SM, Groth G (2016) Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening. Sci Rep 6:30634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    Article  CAS  PubMed  Google Scholar 

  • Cancel JD, Larsen PB (2002) Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. Plant Physiol 129:1557–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao S, Chen Z, Liu G, Jiang L, Yuan H, Ren G, Bian X, Jian H, Ma X (2009) The Arabidopsis ethylene-insensitive 2 gene is required for lead resistance. Plant Physiol Biochem 47:308–312

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Clay MJ, Chang C (2014) Association of cytochrome b5 with ETR1 ethylene receptor signaling through RTE1 in Arabidopsis. Plant J 77(4):558–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133–1144

    Article  CAS  PubMed  Google Scholar 

  • Chen YF, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277:19861–19866

    Article  CAS  PubMed  Google Scholar 

  • Chen YF, Shakeel SN, BowersJ, Zhao XC, Etheridge N, Schaller GE (2007) Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome dependent pathway in Arabidopsis. J Biol Chem 282:24752–24758

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Liu J, Lei G, Liu YF, Li ZG, Tao JJ, Hao YJ, Cao YR, Lin Q, Zhang WK, Ma B, Chen SY, Zhang JS (2009) Effects of tobacco ethylene receptor mutations on receptor kinase activity, plant growth and stress responses. Plant Cell Physiol 50:1636–1650

    Article  CAS  PubMed  Google Scholar 

  • Cho YH, Yoo SD (2007) ETHYLENE RESPONSE 1 histidine kinase activity of Arabidopsis promotes plant growth. Plant Physiol 143(2):612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho YH, Yoo SD (2007) ETHYLENE RESPONSE 1 histidine kinase activity of Arabidopsis promotes plant growth. Plant Physiol 143(2):612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark KL, Larsen PB, Wang XX, Chang C (1998) Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci USA 95:5401–5406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ (2005) A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol 137:831–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong CH, Jang M, Scharein B, Malach A, Rivarola M, Liesch J, Groth G, Hwang I, Chang C (2010) Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1. J Biol Chem 285:40706–40713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong CH, Rivarola M, Resnick JS, Maggin BD, Chang C (2008) Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. Plant J 53:275–286

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Van den Broeck L, Inze D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23(4):311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sharkawy I, Jones B, Li ZG, Lelievre JM, Pech JC, Latche A (2003) Isolation and characterization of four ethylene perception elements and their expression during ripening in pears (Pyrus communis L.) with/without cold requirement. J Exp Bot 54:1615–1625

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy I, Kim WS, El-Kereamy A, Jayasankar S, Svircev AM, Brown DCW (2007) Isolation and characterization of four ethylene signal transduction elements in plums (Prunus salicina L.). J Exp Bot 58:3631–3643

    Article  CAS  PubMed  Google Scholar 

  • Gallie DR (2015) Ethylene receptors in plants-why so much complesity? F1000Prime Rep 7:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gallie DR, Young TE (2004) The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize. Mol Genet Genomics 271:267–281

    Article  CAS  PubMed  Google Scholar 

  • Gamble RL, Coonfield ML, Schaller GE (1998) Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci USA 95:7825–7829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamble RL, Qu X, Schaller GE (2002) Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol 128:1428–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Wen CK, Binder BM, Chen YF, Chang J, Chiang YH, Ill RJK, Chang C, Schaller GE (2008) Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis. J Biol Chem 283:23801–23810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao ZY, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE (2003) Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278:34725–34732

    Article  CAS  PubMed  Google Scholar 

  • Grefen C, Stadele K, Ruzicka K, Obrdlik P, Harter K, Horak J (2008) Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1:308–320

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Zebell SG, Liang Z, Wang S, Kang BH, Dong X (2016) Nuclear pore permeabilization is a convergent signaling event in effector-triggered immunity. Cell 166:1526–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo HW, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Liu J, Wei Q, Wang R, Yang W, Ma Y, Chen G, Yu Y (2017) Proteomes and ubiquitylomes analysis reveals the involvement of ubiquitination in protein degradation in petunias. Plant Physiol 173(1):668–687

    Article  CAS  PubMed  Google Scholar 

  • Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall AE, Chen QG, Findell JL, Schaller GE, Bleecker AB (1999) The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor. Plant Physiol 121:291–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall AE, Bleecker AB (2003) Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell 15:2032–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall AE, Findell JL, Schaller GE, Sisler EC, Bleecker AB (2000) Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol 123:1449–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall BP, Shakeel SN, Schaller GE (2007) Ethylene receptors: ethylene perception and signal transduction. J Plant Growth Regul 26(2):118–130

    Article  CAS  Google Scholar 

  • Hall BP, Shakeel SN, Amir M, Haq NU, Qu X, Schaller GE (2012) Histidine kinase activity of the ethylene receptor ETR1 facilitates the ethylene response in. Arabidopsis Plant Physiol 159:682–695

    Article  CAS  PubMed  Google Scholar 

  • Harkey AF, Watkins JM, Olex AL, DiNapoli KT, Lewis DR, Fetrow JS, Binder BM, Muday GK (2018) Identification of transcriptional and receptor networks that control root responses to ethylene. Plant Physiol 176:2095–2118

    Article  CAS  PubMed  Google Scholar 

  • Hass C, Lohrmann J, Albrecht V, Sweere U, Hummel F, Yoo SD, Hwang I, Zhu T, Schafer E, Kudla J, Harter K (2004) The response regulator 2 mediates ethylene signaling and hormone integration in Arabidopsis. EMBO J 23:3290–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol 158(10):1317–1323

    Article  CAS  Google Scholar 

  • Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) Responsive-to-antagonist 1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97:383–393

    Article  CAS  PubMed  Google Scholar 

  • Hoppen C, Muller L, Albrecht AC, Groth G (2019a) The NOP-1 peptide derived from the central regulator of ethylene signaling EIN2 delays floral senescence in cut flowers. Sci Rep 9:1287–1287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoppen C, Muller L, Hansch S, Uzun B, Milic D, Meyer AJ, Weidtkamp-Peters S, Groth G (2019b) Soluble and membrane bound protein carrier mediate direct copper transport to the ethylene receptor family. Sci Rep 9:10715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712–1714

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10:1321–1332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Dong Z, Guo P, Zhang X, Qiu Y, Li B, Wang Y, Guo H (2019) Salicylic acid suppresses apical hook formation via NPR1-mediated repression of EIN3 and EIL1 in Arabidopsis. Plant Cell. doi:https://doi.org/10.1105/tpc.19.00658

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33:221–233

    Article  CAS  PubMed  Google Scholar 

  • Ju CL, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA 109:19486–19491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessenbrock M, Klein SM, Muller L, Hunsche M, Noga G, Groth G (2017) Novel protein-protein inhibitor based approach to control plant ethylene responses: synthetic peptides for ripening control. Front Plant Sci 8:1528

    Article  PubMed  PubMed Central  Google Scholar 

  • Kevany BM, Tieman DM, Taylor MG, Dal Cin V, Klee HJ (2007) Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J 51(3):458–467

    Article  CAS  PubMed  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the RAF family of protein-kinases. Cell 72:427–441

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Helmbrecht EE, Stalans MB, Schmitt C, Patel N, Wen CK, Wang W, Binder BM (2011) Ethylene receptor ETHYLENE RECEPTOR1 domain requirements for ethylene responses in Arabidopsis seedlings. Plant Physiol 156(1):417–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klee HJ (2002) Control of ethylene-mediated processes in tomato at the level of receptors. J Exp Bot 53(377):2057–2063

    Article  CAS  PubMed  Google Scholar 

  • Lashbrook CC, Tieman DM, Klee HJ (1998) Differential regulation of the tomato ETR gene family throughout plant development. Plant J 15:243–252

    Article  CAS  PubMed  Google Scholar 

  • Lei G, Shen M, Li ZG, Zhang B, Duan KX, Wang N, Cao YR, Zhang WK, Ma B, Ling HQ, Chen SY, Zhang JS (2011) EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECIP1 in Arabidopsis. Plant Cell Environ 34:1678–1692

    Article  CAS  PubMed  Google Scholar 

  • Li W, Ma M, Feng Y, Li H, Wang Y, Ma Y, Li M, An F, Guo H (2015) EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell 163:670–683

    Article  CAS  PubMed  Google Scholar 

  • Lin ZF, Alexander L, Hackett R, Grierson D (2008) LeCTR2, a CTR1-like protein kinase from tomato, plays a role in ethylene signaling, development and defence. Plant J 54:1083–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin ZF, Ho CW, Grierson D (2009) AtTRP1 encodes a novel TPR protein that interacts with the ethylene receptor ERS1 and modulates development in Arabidopsis. J Exp Bot 60:3697–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Chen Y, Chen Y, Shin JH, Mila I, Audran C, Zouine M, Pirrello J, Bouzayen M (2018) The tomato Ethylene Response Factor Sl-ERF.B3 integrates ethylene and auxin signaling via direct regulation of Sl-Aux/IAA27. New Phytol 219(2):631–640

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Xu C, Wen CK (2010) Genetic and transformation studies reveal negative regulation of ERS1 ethylene receptor signaling in Arabidopsis. BMC Plant Biol 10:60–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Q, Wen CK (2012) Arabidopsis ETR1 and ERS1 differentially repress the ethylene response in combination with other ethylene receptor genes. Plant Physiol 158:1193–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma B, Cui ML, Sun HJ, Takada K, Mori H, Kamada H, Ezura H (2006) Subcellular localization and membrane topology of the melon ethylene receptor CmERS1. Plant Physiol 141:587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma B, He SJ, Duan KX, Yin CC, Chen H, Yang C, Xiong Q, Song QX, Lu X, Chen HW, Zhang VK, Lu TG, Chen SY, Zhang JS (2013) Identification of rice ethylene-response mutants and characterization of MHZ7/OsEIN2 in distinct ethylene response and yield trait regulation. Mol Plant 6:1830–1848

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Zhou Y, Chen H, He SJ, Huang YH, Zhao H, Lu X, Zhang WK, Pang JH, Chen SY, Zhang JS (2018) Membrane protein MHZ3 stabilizes OsEIN2 in rice by interacting with its Nramp-like domain. Proc Natl Acad Sci USA 115(10):2520–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Q, Du W, Brandizzi F, Giovannoni JJ, Barry CS (2012) Differential control of ethylene responses by GREEN-RIPE and GREEN-RIPE LIKE1 provides evidence for distinct ethylene signaling modules in tomato. Plant Physiol 160:1968–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Q, Sun J, Mao T (2015) Microtubule bundling plays a role in ethylene-mediated cortical microtubule reorientation in etiolated Arabidopsis hypocotyls. J Cell Sci 129(10):2043–2051

    Article  CAS  Google Scholar 

  • Ma QH, Wang XM (2003) Characterization of an ethylene receptor homologue from wheat and its expression during leaf senescence. J Exp Bot 54:1489–1490

    Article  CAS  PubMed  Google Scholar 

  • Maggio C, Barbante A, Ferro F, Frigerio L, Pedrazzini E (2007) Intracellular sorting of the tail-anchored protein cytochrome b5 in plants: a comparative study using different isoforms from rabbit and Arabidopsis. J Exp Bot 58:1365–1379

    Article  CAS  PubMed  Google Scholar 

  • Manzano S, Martinez C, Gomez P, Garrido D, Jamilena M (2010) Cloning and haracterisation of two CTR1-like genes in Cucurbita pepo: regulation of their expression during male and female flower development. Sex Plant Reprod 23(4):301–313

    Article  CAS  PubMed  Google Scholar 

  • Mayerhofer H, Panneerselvam S, Kaljunen H, Tuukkanen A, Mertens HDT, Mueller-Dieckmann J (2015) Structural model of the cytosolic domain of the plant ethylene receptor 1 (ETR1). J Biol Chem 290:2644–2658

    Article  CAS  PubMed  Google Scholar 

  • Mayerhofer H, Panneerselvam S, Mueller-Dieckmann J (2012) Protein kinase domain of CTR1 from Arabidopsis thaliana promotes ethylene receptor cross talk. J Mol Biol 415:768–779

    Article  CAS  PubMed  Google Scholar 

  • Mazzella MA, Casal JJ, Muschietti JP, Fox AR (2014) Hormonal networks involved in apical hook development in darkness and their response to light. Front Plant Sci 5:52

    Article  PubMed  PubMed Central  Google Scholar 

  • McDaniel BK, Binder BM (2012) Ethylene receptor 1 (ETR1) is sufficient and has the predominant role in mediating inhibition of ethylene responses by silver in Arabidopsis thaliana. J Biol Chem 287(31):26094–26103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchante C, Brumos J, Yun J, Hu Q, Spencer KR, Enriquez P, Binder BM, Heber S, Stepanova AN, Alonso JM (2015) Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell 163:684–697

    Article  CAS  PubMed  Google Scholar 

  • Miao ZQ, Zhao PX, Mao JL, Yu LH, Yuan Y, Tang H, Liu ZB, Xiang CB (2018) HOMEOBOX PROTEIN52 mediates the crosstalk between ethylene and auxin signaling during primary root elongation by modulating auxin transport-related gene expression. Plant Cell 30(11):2761–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milic D, Dick M, Mulnaes D, Pfleger C, Kinnen A, Gohlke H, Groth G (2018) Recognition motif and mechanism of ripening inhibitory peptides in plant hormone receptor ETR1. Sci Rep 8:3890–3901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyata K, Kawaguchi M, Nakagawa T (2013) Two distinct EIN2 genes cooperatively regulate ethylene signaling in Lotus japonicus. Plant Cell Physiol 54:1469–1477

    Article  CAS  PubMed  Google Scholar 

  • Montero-Palmero MB, Martin-Barranco A, Escobar C, Hernandez LE (2014) Early transcriptional responses to mercury: a role for ethylene in mercury-induced stress. New Phytol 201:116–130

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Shirasawa K, Nogata H, Hirata C, Tashiro K, Habu T, Kim S, Himeno S, Kuhara1 S, Ikegami H (2017) Identification of RAN1 orthologue associated with sex determination through whole genome sequencing analysis in fig (Ficus carica L.). Sci Rep 7:41124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moussatche P, Klee HJ (2004) Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem 279:48734–48741

    Article  CAS  PubMed  Google Scholar 

  • Muller R, Owen CA, Xue ZT, Welander M, Stummann BM (2002) Characterization of two CTR-like protein kinases in Rosa hybrida and their expression during flower senescence and in response to ethylene. J Exp Bot 53:1223–1225

    Article  CAS  PubMed  Google Scholar 

  • Nagano M, Ihara-Ohori Y, Imai H, Inada N, Fujimoto M, Tsutsumi N, Uchimiya H, Kawai-Yamada M (2009) Functional association of cell death suppressor, Arabidopsis Bax inhibitor-1, with fatty acid 2-hydroxylation through cytochrome b5. Plant J 58:122–134

    Article  CAS  PubMed  Google Scholar 

  • Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55:175–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penmetsa RV, Uribe P, Anderson J, Lichtenzveig J, Gish JC, Nam YW, Engstrom E, Xu K, Sckisel G, Pereira M, Baek JM, Lopez-Meyer M, Long SR, Harrison MJ, Singh KB, Kiss GB, Cook DR (2008) The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant J 55:580–595

    Article  CAS  PubMed  Google Scholar 

  • Piya S, Binder BM, Hewezi T (2019) Canonical and noncanonical ethylene signaling pathways that regulate Arabidopsis susceptibility to the cyst nematode Heterodera schachtii. New Phytol 221:946–959

    Article  CAS  PubMed  Google Scholar 

  • Plett JM, Cvetkovska M, Makenson P, Xing T, Regan S (2009a) Arabidopsis ethylene receptors have different roles in Fumonisin B1-induced cell death. Physiol Mol Plant Pathol 74:18–26

    Article  CAS  Google Scholar 

  • Plett JM, Mathur J, Regan S (2009b) Ethylene receptor ETR2 controls trichome branching by regulating microtubule assembly in Arabidopsis thaliana. J Exp Bot 60:3923–3933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puig S, Mira H, Dorcey E, Sancenon V, Andres-Colas N, Garcia-Molina A, Burkhead JL, Gogolin KA, Abdel-Ghany SE, Thiele DJ, Ecker JR, Pilon M, Penarrubia L (2007) Higher plants possess two different types of ATX1-like copper chaperones. Biochem Biophys Res Commun 354(2):385–390

    Article  CAS  PubMed  Google Scholar 

  • Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Gene Dev 23:512–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao H, Shen Z, Huang SC, Schmitz RJ, Urich MA, Briggs SP, Ecker JR (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338(6105):390–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu L, Xie F, Yu J, Wen CK (2012) Arabidopsis RTE1 is essential to ethylene receptor ETR1 amino-terminal signaling independent of CTR1. Plant Physiol 159(3):1263–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu X, Hall BP, Gao ZY, Schaller GE (2007) A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1. BMC Plant Biol 7:3–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rai MI, Wang X, Thibault DM, Kim HJ, Bombyk MM, Binder BM, Shakeel SN, Schaller GE (2015) The ARGOS gene family functions in a negative feedback loop to desensitize plants to ethylene. BMC Plant Biol 15:157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Resnick JS, Wen CK, Shockey JA, Chang C (2006) REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci USA 103:7917–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resnick JS, Rivarola M, Chang C (2008) Involvement of RTE1 in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis. Plant J 56:423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996–998

    Article  CAS  PubMed  Google Scholar 

  • Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics 139(3):1393–1409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roman G, Ecker JR (1995) Genetic analysis of a seedling stress response to ethylene in Arabidopsis. Philos Trans R Soc Lond B Biol Aci 350:75–81

    Article  CAS  Google Scholar 

  • Sakai H, Hua J, Chen QG, Chang CR, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 95:5812–5817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvador-Guirao R, Hsing Y, Segundo BS (2018) The polycistronic miR166k-166 h positively regulates rice immunity via post-transcriptional control of EIN2. Front Plant Sci 9:337

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaller GE, Bleecker AB (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270:1809–1811

    Article  CAS  PubMed  Google Scholar 

  • Schaller GE, Ladd AN, Lanahan MB, Spanbauer JM, Bleecker AB (1995) The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer. J Biol Chem 270:12526–12530

    Article  CAS  PubMed  Google Scholar 

  • Scharein B, Voet-van-Vormizeele J, Harter K, Groth G (2008) Ethylene signaling: identification of a putative ETR1-AHP1 phosphorelay complex by fluorescence spectroscopy. Anal Biochem 377:72–76

    Article  CAS  PubMed  Google Scholar 

  • Schenkman JB, Jansson I (2003) The many roles of cytochrome b5. Pharmacol Ther 97:139–152

    Article  CAS  PubMed  Google Scholar 

  • Schott-Verdugo S, Muller L, Classen E, Gohlke H, Groth G (2019) Structural model of the ETR1 ethylene receptor transmembrane sensor domain. Sci Rep 9:8869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seifert GJ, Barber C, Wells B, Roberts K (2004) Growth regulators and the control of nucleotide sugar flux. Plant Cell 16:723–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakeel SN, Wang X, Binder BM, Schaller GE (2013) Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signaling roles in a receptor family. AoB Plant 5:plt010

    Article  CAS  Google Scholar 

  • Shakeel SN, Gao Z, Amir M, Chen YF, Rai MI, Haq NU, Schaller GE (2015) Ethylene regulates levels of ethylene receptor/CTR1 signaling complexes in Arabidopsis thaliana. J Biol Chem 290(19):12415–12424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Drummond BJ, Wang H, Archibald RL, Habben JE (2016) Maize and Arabidopsis ARGOS proteins interact with ethylene receptor signaling complex, supporting a regulatory role for ARGOS in ethylene signal transduction. Plant Physiol 171(4):2783–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibuya K, Nagata M, Tanikawa N, Yoshioka T, Hashiba T, Satoh S (2002) Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). J Exp Bot 53:399–406

    Article  CAS  PubMed  Google Scholar 

  • Shibuya K, Barry KG, Ciardi JA, Loucas HM, Underwood BA, Nourizadeh S, Ecker JR, Klee HJ, Clark DG (2004) The central role of PhEIN2 in ethylene responses throughout plant development in petunia. Plant Physiol 136:2900–2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin LJ, Lo JC, Yeh KC (2012) Copper chaperone antioxidant protein1 is essential for copper homeostasis. Plant Physiol 159(3):1099–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smet D, Zadnikova P, Vandenbussche F, Benkova E, Van Der Straeten D (2014) Dynamic infrared imaging analysis of apical hook development in Arabidopsis: the case of brassinosteroids. New Phytol 202:1398–1411

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Tian QY, Chen J, Zhang WH (2010) Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. J Exp Bot 61:347–356

    Article  CAS  PubMed  Google Scholar 

  • Street IH, Aman S, Zubo Y, Ramzan A, Wang X, Shakeel SN, Kieber JJ, Schaller GE (2015) Ethylene inhibits cell proliferation of the Arabidopsis root meristem. Plant Physiol 169:338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Liu J, Huang F, Guan J, Zhong S, Tang N, Zhao J, Yang W, Yu Y (2014) PhGRL2 protein, interacting with PhACO1, is involved in flower senescence in the petunia. Mol Plant 7:1384–1387

    Article  CAS  PubMed  Google Scholar 

  • Terajima Y, Nukui H, Kobayashi A, Fujimoto S, Hase S, Yochioka T, Hashiba T, Saton S (2001) Molecular cloning and characterization of a cDNA for a novel ethylene receptor, NT-ERS1, of tobacco (Nicotiana tabacum L.). Plant Cell Physiol 42:308–313

    Article  CAS  PubMed  Google Scholar 

  • Tieman DV, Taylor MG, Ciardi JA, Klee HJ (2000) The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proc Natl Acad Sci USA 97:5663–5668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urao T, Miyata S, Yamaguchi-Shinozaki K, Shinozaki K (2000) Possible His to Asp phosphorelay signaling in an Arabidopsis two-component system. FEBS Lett 478:227–232

    Article  CAS  PubMed  Google Scholar 

  • Vaseva II, Qudeimat E, Potuschak T, Du Y, Genschik P, Vandenbussche F, Straeten DVD (2018) The plant hormone ethylene restricts Arabidopsis growth via the epidermis. Proc Natl Acad Sci USA 115(17):E4130–E4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WY, Hall AE, O’Malley R, Bleecker AB (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci USA 100:352–357

    Article  CAS  PubMed  Google Scholar 

  • Wang WY, Esch JJ, Shiu SH, Agula H, Binder BM, Chang C, Patterson SE, Bleecker AB (2006) Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. Plant Cell 18:3429–3442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Kumar PP (2007) Characterization of two ethylene receptors PhERS1 and PhETR2 from petunia: PhETR2 regulates timing of anther dehiscence. J Exp Bot 58:533–544

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Cui X, Sun Y, Dong CH (2013a) Ethylene signaling and regulation in plant growth and stress responses. Plant Cell Rep 32:1099–1109

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zhang W, Yin Z, Wen CK (2013b) Rice CONSTITUTIVE TRIPLE-RESPONSE2 is involved in the ethylene-receptor signaling and regulation of various aspects of rice growth and development. J Exp Bot 64(16):4863–4875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Sun Y, Chang J, Zheng F, Pei H, Yi Y, Chang C, Dong CH (2016) Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling. Plant Mol Biol 91:471–484

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang L, Qiao L, Chen J, Pappa MB, Pei H, Zhang T, Chang C, Dong CH (2017) Arabidopsis CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor. J Integr Plant Biol 59(11):810–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ji Y, Fu Y, Guo H (2018a) Ethylene-induced microtubule reorientation is essential for fast inhibition of root elongation in Arabidopsis. J Integr Plant Biol 60(9):864–877

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zou W, Xiao Y, Cheng L, Liu Y, Gao S, Shi Z, Jiang Y, Qi M, Xu T, Li T (2018b) MicroRNA1917 targets CTR4 splice variants to regulate ethylene responses in tomato. J Exp Bot 69(5):1011–1025

    Article  CAS  PubMed  Google Scholar 

  • Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang L, Guo H (2012) Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res 22:1613–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiersma PA, Zhang H, Lu C, Quail A, Toivonen PMA (2007) Survey of the expression of genes for ethylene synthesis and perception during maturation and ripening of ‘Sunrise’ and ‘Golden Delicious’ apple fruit. Postharvest Biol Technol 44:204–211

    Article  CAS  Google Scholar 

  • Wilson RL, Kim H, Bakshi A, Binder BM (2014a) The ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 have contrasting roles in seed germination of Arabidopsis during salt stress. Plant Physiol 165(3):1353–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RL, Bakshi A, Binder BM (2014b) Loss of the ETR1 ethylene receptor reduces the inhibitory effect of far-red light and darkness on seed germination of Arabidopsis thaliana. Front Plant Sci 5:433

    Article  PubMed  PubMed Central  Google Scholar 

  • Woeste KE, Kieber JJ (2000) A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell 12:443–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wuriyanghan H, Zhang B, Cao WH, Ma B, Lei G, Liu YF, Wei W, Wu HJ, Chen LJ, Chen HW, Cao YR, He SJ, Zhang WK, Wang XJ, Chen SY, Zhang JS (2009) The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell 21:1473–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie C, Zhang JS, Zhou HL, Li J, Zhang ZG, Wang DW, Chen SY (2003) Serine/threonine kinase activity in the putative histidine kinase-like ethylene receptor NTHK1 from tobacco. Plant J 33:385–393

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Liu Q, Wen CK (2006) Receptor signal output mediated by the ETR1 N terminus is primarily subfamily I receptor dependent. Plant Physiol 142(2):492–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie F, Qiu L, Wen CK (2012) Possible modulation of Arabidopsis ETR1 N-terminal signaling by CTR1. Plant Signal Behav 7:1243–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu A, Zhang W, Wen CK (2014) ENHANCING CTR1-10 ETHYLENE RESPONSE2 is a novel allele involved in CONSTITUTIVE TRIPLE-RESPONSE1-mediated ethylene receptor signaling in Arabidopsis. BMC Plant Biol 14:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu C, Zhou X, Wen CK (2015) HYPER RECOMBINATION1 of the THO/TREX complex plays a role in controlling transcription of the REVERSIONTO-ETHYLENE SENSITIVITY1 gene in Arabidopsis. PLoS Genet 11(2):e1004956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamasaki S, Fujii N, Takahashi H (2000) The ethylene-regulated expression of CS-ETR2 and CS-ERS2 genes in cucumber plants and their possible involvement with sex expression in flowers. Plant Cell Physiol 41:608–616

    Article  CAS  PubMed  Google Scholar 

  • Yau CP, Wang LJ, Yu MD, Zee SY, Yip WK (2004) Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole-3-acetic acid and silver ions. J Exp Bot 55(397):547–556

    Article  CAS  PubMed  Google Scholar 

  • Yin XR, Chen KS, Allan AC, Wu RM, Zhang B, Lallu N, Ferguson IB (2008) Ethylene-induced modulation of genes associated with the ethylene signaling pathway in ripening kiwifruit. J Exp Bot 59(8):2097–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Wen CK (2013) Arabidopsis aux1rcr1 mutation alters AUXIN RESISTANT1 targeting and prevents expression of the auxin reporter DR5:GUS in the root apex. J Exp Bot 64(4):921–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Yau CP, Yip WK (2017) Differentially localized rice ethylene receptors OsERS1 and OsETR2 and their potential role during submergence. Plant Signal Behav 12(8):e1356532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan HM, Xu HH, Liu WC, Lu YT (2013) Copper regulates primary root elongation through PIN1-mediated auxin redistribution. Plant Cell Physiol 54:766–778

    Article  CAS  PubMed  Google Scholar 

  • Zdarska M, Cuyacot AR, Tarr PT, Yamoune A, Szmitkowska A, Hrdinova V, Gelova Z, Meyerowitz EM, Hejatko J (2019) ETR1 integrates response to ethylene and cytokinins into a single multistep phosphorelay pathway to control root growth. Mol Plant 12:1338–1352

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Zhou X, Wen CK (2012) Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development. J Exp Bot 63:4151–4164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Qi B, Wang L, Zhao B, Rode S, Riggan ND, Ecker JR, Qiao H (2016) EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling. Nat Commun 7:13018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Wang L, Qi B, Zhao B, Ko EE, Riggan ND, Chin K, Qiao H (2017) EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proc Natl Acad Sci USA 114(38):10274–10279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Chen Y, Lu J, Zhang Y, Wen CK (2020) Uncertainty of EIN2Ser645/Ser924 inactivation by CTR1-mediated phosphorylation reveals the complexity of ethylene signaling. Plant Communications 1:100046

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao XC, Qu X, Mathews DE, Schaller GE (2002) Effect of ethylene pathway mutations upon expression of the ethylene receptor ETR1 from Arabidopsis. Plant Physiol 130(4):1983–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Duan KX, Ma B, Yin CC, Hu Y, Tao JJ, Huang YH, Cao WQ, Chen H, Yang C, Zhang ZG, He SJ, Zhang WK, Wan XY, Lu TG, Chen SY, Zhang JS (2020a) Histidine kinase MHZ1/OsHK1 interacts with ethylene receptors to regulate root growth in rice. Nat Commun 11:518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Ma B, Duan KX, Li XK, Lu X, Yin CC, Tao JJ, Wei W, Zhang WK, Xin PY, Lam SM, Chu JF, Shui GH, Chen SY, Zhang JS (2020b) The GDSL lipase MHZ11 modulates ethylene signaling in rice roots. Plant Cell 32:1626–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng F, Cui X, Rivarola M, Gao T, Chang C, Dong CH (2017) Molecular association of Arabidopsis RTH with its homolog RTE1 in regulating ethylene signaling. J Exp Bot 68(11):2821–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Liu Q, Xie F, Wen CK (2007) RTE1 is a Golgi-associated and ETR1-dependent negative regulator of ethylene responses. Plant Physiol 145:75–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu HL, Zhu BZ, Shao Y, Wang XG, Lin XJ, Xie YH, Li YC, Gao HY, Luo YB (2006) Tomato fruit development and ripening are altered by the silencing of LeEIN2 gene. J Integr Plant Biol 48(12):1478–1485

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Chi-Kuang Wen (Institute of Plant Physiology and Ecology, Chinese Academy of Sciences) for his suggestions and comments. Critical reading of the manuscript by Dr. Guoqing Song (Michigan State University) is greatly appreciated. This work was supported by Research Foundation for Advanced Talents of Qingdao Agricultural University (#1113339) and the Project of Shandong Modern Vegetable Technology Industry System (SDAIT-05-21) to QM, Shandong Natural Science Foundation (ZR2019MC061) and Shandong Agricultural Variety Project (2019LZGC015) to CHD, and National Natural Science Foundation of China to CHD (#31870255) and QM (#31900247).

Author information

Authors and Affiliations

Authors

Contributions

QM wrote this manuscript; CHD outlined and revised the manuscript.

Corresponding author

Correspondence to Qian Ma.

Ethics declarations

Conflict of interest

We declared that the authors of this paper have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Dong, CH. Regulatory functions and molecular mechanisms of ethylene receptors and receptor-associated proteins in higher plants. Plant Growth Regul 93, 39–52 (2021). https://doi.org/10.1007/s10725-020-00674-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-020-00674-5

Keywords

Navigation