Skip to main content
Log in

Sequence and functional analysis of cis-elements associated with MIR159 loci from Brassica juncea reveal functional diversification and complex transcriptional regulation

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Identification and functional analysis of promoters is critical towards gaining insights into transcriptional regulation, and helps in identifying interacting trans-factors. Analysis of MIRNA promoter can differentiate the function of paralogs and homeologs where identifying the role of members of MIRNA family is difficult based on small RNA blots due to near-identical mature sequences. The role of miRNA as regulators of development and adaptation in polyploid species-Brassica, and the impact of polyploidy on divergence among paralogs and homeologs especially with reference to transcriptional regulation remains unexplored. We identified homologs of MIR159 from 137 species across plants based on their homology to pre-MIR159A, MIR159B, and MIR159C from Arabidopsis and retrieved their promoter sequences. Promoter sequence analysis revealed high level of divergence; albeit clades of closely related taxonomic units were obtained. We detected biased, but no lineage-specific distribution of transcription factor binding motifs (TFBS) in families. Phylogenetic reconstruction in Brassicaceae revealed genome- and sub-genome specific clades. We isolated three homeologs of MIR159A, and one of MIR159C from the A-genome of B. juncea. Functional characterization involved transgenic lines in A. thaliana Col-0 with promoter::reporter transcriptional fusions (p-MIR159::GUS::ter) and monitoring of reporter activity during development, abiotic stresses, and after administering hormones. Comparison of reporter activity of full-length promoters across homeologs and paralogs reveal extensive functional diversification. Comparative analysis of reporter activity of nested deletions, and with distribution of TFBS did not yield a clear correlation. In summary, analysis of GUS during development, hormone treatment and abiotic stresses reveal complex transcriptional regulation of MIR159 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    PubMed  CAS  Google Scholar 

  • Allen RS, Li J, Stahle MI, Dubroué A, Gubler F, Millar AA (2007) Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104:16371–16376

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alonso-Peral MM, Li J, Li Y, Allen RS, Schnippenkoetter W, Ohms S, White RG, Millar AA (2010) The MicroRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol 154:757–771

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bartel B (2003) MicroRNAs: at the root of plant development. Plant Physiol 132:709–717

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    PubMed  CAS  Google Scholar 

  • Buxdorf K, Hendelman A, Stav R, Lapidot M, Ori N, Arazi T (2010) Identification and characterization of a novel miR159 target not related to MYB in tomato. Planta 232:1009–1022

    PubMed  CAS  Google Scholar 

  • Carlson JM, Chakravarty A, Khetani RS, Gross RH (2006) Bounded search for de novo identification of degenerate cis-regulatory elements. BMC Bioinformatics 7:254

    PubMed  PubMed Central  Google Scholar 

  • Chauhan C, Joshi G, Chaudhary D, Das S (2018) An improved method for rapid analysis of promoters using modified sonication-assisted transient assay. 3 Biotech 8(4):198

    PubMed  PubMed Central  Google Scholar 

  • Chen D-H, Chang AY-F, Liao B-Y, Yeang C-H (2013) Functional characterization of motif sequences under purifying selection. Nucleic Acids Res 41:2105–2120

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11:136

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng F, Wu J, Fang L, Sun S, Liu B, Lin K, Bonnema G, Wang X (2012) Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS ONE 7:e36442

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng F, Wu J, Wang X (2014) Genome triplication drove the diversification of Brassica plants. Hortic Res 1:14024

    PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediate transformation of Arabidopsis thaliana. Plant J 16:735–743

    PubMed  CAS  Google Scholar 

  • Csukasi F, Donaire L, Casañal A, Martínez-Priego L, Botella MA, Medina-Escobar N, Llave C, Valpuesta V (2012) Two strawberry miR159 family members display developmental-specific expression patterns in the fruit receptacle and cooperatively regulate Fa-GAMYB. New Phytol 195:47–57

    PubMed  CAS  Google Scholar 

  • Dathan N, Zaccaro L, Esposito S, Isernia C, Omichinski JG, Riccio A, Pedone C, Di Blasio B, Fattorusso R, Pedone PV (2002) The Arabidopsis SUPERMAN protein is able to specifically bind DNA through its single Cys2-His2 zinc finger motif. Nucleic Acids Res 30(22):4945–4951

    PubMed  PubMed Central  CAS  Google Scholar 

  • Duval M, Hsieh TF, Kim SY, Thomas TL (2002) Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol 50(2):237–248

    PubMed  CAS  Google Scholar 

  • Ferris SD, Whitt GS (1979) Evolution of the differential regulation of duplicate genes after polyploidization. J Mol Evol 12:267–317

    PubMed  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gallagher SR (1992) Quantitation of GUS activity by fluorometry. In: Gallagher SR (ed) GUS protocols: using the GUS gene as a reporter of gene expression. Academic Press Inc., New York, pp 47–59

    Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    PubMed  CAS  Google Scholar 

  • Green MR, Sambrook J (eds) (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Griffiths-Jones S (2006) miRBase: the MicroRNA sequence database. In: Walker JM (ed) MicroRNA protocols. Humana Press, New Jersey, pp 129–138

    Google Scholar 

  • Gu Z, Nicolae D, Lu HH-S, Li W-H (2002) Rapid divergence in expression between duplicate genes inferred from microarray data. Trends Genet 18:609–613

    PubMed  CAS  Google Scholar 

  • Gubler F, Raventos D, Keys M, Watts R, Mundy J, Jacobsen JV (1999) Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone. Plant J 17(1):1–9

    PubMed  CAS  Google Scholar 

  • Hehl R, Norval L, Romanov A, Bülow L (2016) Boosting AthaMap database content with data from protein binding microarrays. Plant Cell Physiol 57:e4–e4

    PubMed  Google Scholar 

  • Hunter C (2003) miSSING LINKS: miRNAs and plant development. Curr Opin Genet Dev 13:372–378

    PubMed  CAS  Google Scholar 

  • Jain A, Das S (2016) Synteny and comparative analysis of miRNA retention, conservation, and structure across Brassicaceae reveals lineage- and sub-genome-specific changes. Funct Integr Genomics 16:253–268

    PubMed  CAS  Google Scholar 

  • Jain A, Anand S, Singh NK, Das S (2018) Sequence and functional characterization of MIRNA164 promoters from Brassica shows copy number dependent regulatory diversification among homeologs. Funct Integr Genomics 18(4):369–383

    PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jin D, Wang Y, Zhao Y, Chen M (2013) MicroRNAs and their cross-talks in plant development. J Genet Genomics 40:161–170

    PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    PubMed  CAS  Google Scholar 

  • Juven-Gershon T, Kadonaga JT (2010) Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol 339:225–229

    PubMed  CAS  Google Scholar 

  • Korneev S, O’Shea M (2002) Evolution of nitric oxide synthase regulatory genes by DNA inversion. Mol Biol Evol 19:1228–1233

    PubMed  CAS  Google Scholar 

  • Koshino-Kimura Y, Wada T, Tachibana T, Tsugeki R, Ishiguro S, Okada K (2005) Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis. Plant Cell Physiol 46(6):817–826

    PubMed  CAS  Google Scholar 

  • Kozaki A, Hake S, Colasanti J (2004) The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties. Nucleic Acids Res 32(5):1710–1720

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    PubMed  CAS  Google Scholar 

  • Kristiansson E, Thorsen M, Tamás MJ, Nerman O (2009) Evolutionary forces act on promoter length: identification of enriched cis-regulatory elements. Mol Biol Evol 26:1299–1307

    PubMed  CAS  Google Scholar 

  • Kumari G, Kusumanjali K, Srivastava PS, Das S (2013) Isolation and expression analysis of miR165a and REVOLUTA from Brassica species. Acta Physiol Plant 35:399–410

    CAS  Google Scholar 

  • Kusumanjali K, Kumari G, Srivastava PS, Das S (2012) Sequence conservation and divergence in miR164C1 and its target, CUC1, in Brassica species. Plant Biotechnol Rep 6:149–163

    Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    CAS  PubMed  Google Scholar 

  • Li X, Noll M (1994) Evolution of distinct developmental functions of three Drosophila genes by acquisition of different cis-regulatory regions. Nature 367:83–87

    PubMed  CAS  Google Scholar 

  • Li D, Liu Z, Gao L, Wang L, Gao M, Jiao Z, Qiao H, Yang J, Chen M, Yao L, Liu R, Kan Y (2016) Genome-wide identification and characterization of microRNAs in developing grains of Zea mays L. PLoS ONE 11(4):e0153168

    PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    PubMed  CAS  Google Scholar 

  • Liu Q, Chen Y-Q (2009) Insights into the mechanism of plant development: Interactions of miRNAs pathway with phytohormone response. Biochem Biophys Res Commun 384:1–5

    PubMed  CAS  Google Scholar 

  • Liu Q, Zhang Y-C, Wang C-Y, Luo Y-C, Huang Q-J, Chen S-Y, Zhou H, Qu L-H, Chen Y-Q (2009) Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett 583:723–728

    PubMed  CAS  Google Scholar 

  • Liu X, Shangguan Y, Zhu J, Lu Y, Han B (2013) The rice OsLTP6 gene promoter directs anther-specific expression by a combination of positive and negative regulatory elements. Planta 238:845–857

    PubMed  CAS  Google Scholar 

  • Ma J, Guo T, Wang Q, Wang K, Sun R, Zhang B (2015) Expression profiles of miRNAs in Gossypium raimondii. J Zhejiang Univ Sci B 16:296–303

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mahony S, Benos PV (2007) STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids Res 35:W253–W258

    PubMed  PubMed Central  Google Scholar 

  • Martínez-García JF, Moyano E, Alcocer MJ, Martin C (1998) Two bZIP proteins from Antirrhinum flowers preferentially bind a hybrid C-box/G-box motif and help to define a new sub-family of bZIP transcription factors. Plant J 13(4):489–505

    PubMed  Google Scholar 

  • Millar AA (2005) The arabidopsis GAMYB-Like genes, MYB33 and MYB65, are MicroRNA-regulated genes that redundantly facilitate anther development. PLANT CELL ONLINE 17:705–721

    CAS  Google Scholar 

  • Nag A, King S, Jack T (2009) miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci USA 106:22534–22539

    PubMed  CAS  PubMed Central  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34(2):137–148

    PubMed  CAS  Google Scholar 

  • Navabi Z-K, Huebert T, Sharpe AG, O’Neill CM, Bancroft I, Parkin IA (2013) Conserved microstructure of the Brassica B Genome of Brassica nigra in relation to homologous regions of Arabidopsis thaliana, B. rapa and B. oleracea. BMC Genomics 14:250

    Google Scholar 

  • Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, Carrington JC, Weigel D (2007) Sequence and expression differences underlie functional specialization of Arabidopsis MicroRNAs miR159 and miR319. Dev Cell 13:115–125

    PubMed  CAS  Google Scholar 

  • Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    PubMed  PubMed Central  CAS  Google Scholar 

  • Peng J, Qi X, Chen X, Li N, Yu J (2017) ZmDof30 negatively regulates the promoter activity of the pollen-specific gene Zm908. Front Plant Sci 8:685

    PubMed  PubMed Central  Google Scholar 

  • Rathore P, Geeta R, Das S (2016) Microsynteny and phylogenetic analysis of tandemly organised miRNA families across five members of Brassicaceae reveals complex retention and loss history. Plant Sci 247:35–48

    PubMed  CAS  Google Scholar 

  • Rawat R, Xu Z-F, Yao K-M, Chye M-L (2005) Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase. Plant Mol Biol 57:629–643

    PubMed  CAS  Google Scholar 

  • Rech GE, Sanz-Martín JM, Anisimova M, Sukno SA, Thon MR (2014) Natural selection on coding and noncoding DNA sequences is associated with virulence genes in a plant pathogenic fungus. Genome Biol Evol 6:2368–2379

    PubMed  PubMed Central  CAS  Google Scholar 

  • Reidt W, Wohlfarth T, Ellerström M, Czihal A, Tewes A, Ezcurra I, Rask L, Bäumlein H (2000) Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J 21(5):401–408

    PubMed  CAS  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N, (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34:166–176

    PubMed  CAS  Google Scholar 

  • Shamimuzzaman M, Vodkin L (2012) Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genomics 13:310

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2014) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539–539

    Google Scholar 

  • Sorge S, Ha N, Polychronidou M, Friedrich J, Bezdan D, Kaspar P, Schaefer MH, Ossowski S, Henz SR, Mundorf J, Rätzer J, Papagiannouli F, Lohmann I (2012) The cis-regulatory code of Hox function in Drosophila. EMBO J 31:3323–3333

    PubMed  PubMed Central  CAS  Google Scholar 

  • Steffens NO, Galuschka C, Schindler M, Bülow L, Hehl R (2004) AthaMap: an online resource for in silico transcription factor binding sites in the Arabidopsis thaliana genome. Nucleic Acids Res 32:D368–D372

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sun G (2012) MicroRNAs and their diverse functions in plants. Plant Mol Biol 80:17–36. https://doi.org/10.1007/s11103-011-9817-6

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tsuwamoto R, Harada T (2010) Identification of a cis-regulatory element that acts in companion cell-specific expression of AtMT2B promoter through the use of brassica vasculature and gene-gun-mediated transient assay. Plant Cell Physiol 51:80–90

    PubMed  CAS  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park B-S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IAP, Batley J, Kim J-S, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S-J, Choi S-R, Lee T-H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    PubMed  CAS  Google Scholar 

  • Wang Y, Sun F, Cao H, Peng H, Ni Z, Sun Q, Yao Y (2012) TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS ONE 7:e48445

    PubMed  PubMed Central  CAS  Google Scholar 

  • Weigel D, Glazebrook J, Weigel D (2002) Arabidopsis: a Laboratory Manual. Cold Spring Harbor, Jane Glazebrook

    Google Scholar 

  • Wong WSW (2004) Detecting selection in noncoding regions of nucleotide sequences. Genetics 167:949–958

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xing L, Zhang D, Zhao C, Li Y, Ma J, An N, Han M (2016) Shoot bending promotes flower bud formation by miRNA-mediated regulation in apple (Malus domestica Borkh.). Plant Biotechnol J 14:749–770

    PubMed  CAS  Google Scholar 

  • Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z, Chen S, Pental D, Ju Y, Yao P, Li X, Xie K, Zhang J, Wang J, Liu F, Ma W, Shopan J, Zheng H, Mackenzie SA, Zhang M (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet 48:1225–1232

    PubMed  CAS  Google Scholar 

  • Zou C, Sun K, Mackaluso JD, Seddon AE, Jin R, Thomashow MF, Shiu S-H (2011) Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proc Natl Acad Sci USA 108:14992–14997

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was supported by a Department of Biotechnology, Govt. Of India (DBT) grant (Grant No. BT/PR14532/AGR/36/673/2010) to SD, and a DBT project Junior Research Fellowship (JRF) to CC. GJ is supported by JRF/SRF from University Grants Commission (UGC). SD would also like to acknowledge financial assistance received from Delhi University under R&D grant support.

Author information

Authors and Affiliations

Authors

Contributions

Chetan Chauhan, Darshana Chaudhary and Sandip Das were involved in conceptualizing and planning of the study. Chetan Chauhan and Gauri Joshi performed the experiments and, collected data. CC and SD analysed and wrote the manuscript. All authors have read and approve of the manuscripts.

Corresponding author

Correspondence to Sandip Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Accession Numbers: MN165009, MN165018.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10725_2020_578_MOESM1_ESM.ai

Supplementary Figure 1 Average sequence identity (as percentage) between promoters of MIR159 homologs identified across plants kingdom presents. Supplementary file 1 (AI 2606 kb)

10725_2020_578_MOESM2_ESM.pdf

Supplementary Figure 2 Phylogenetic reconstruction based on ca. 550 bp of putative promoter region associated with MIR159 homologs across plants. Supplementary file 2 (PDF 2324 kb)

10725_2020_578_MOESM3_ESM.tif

Supplementary Figure 3 Phylogenetic reconstruction based on ca. 550 bp of putative promoter region associated with MIR159 homologs across plants. The homologs and homeologs of MIR159 in members of Brassicaceae are boxed. Supplementary file 3 (TIF 210 kb)

10725_2020_578_MOESM4_ESM.tif

Supplementary Figure 4 Cis-regulatory motif analysis using MEME server (http://meme-suite.org/) and STAMP (http://www.benoslab.pitt.edu/stamp/). STAMP is an alignment base tool to identify statistically significant motif. Alignment file of retrieved sequences were processed on MEME server to identify conserve motifs. A list of motifs was further analyzed on STAMP server to identify statistically significant motif based on experimental evidence and functional significance. A: X-axis represents TFBS motifs and Y-axis represent the number of sequences containing this motif. B: X-axis represents functional category of motif and Y-axis represent the frequency of occurrence of the TFBS of a functional category across MIR159 promoters. Supplementary file 4 (TIF 8104 kb)

10725_2020_578_MOESM5_ESM.tif

Supplementary Figure 5 Analysis of cis-regulatory motif module distributed along the phylogenetic tree reconstructed using the promoter sequences of MIR159 gene from different species. Cis-motifs involved in different processes like cell differentiation (CD)- ACTCTCTATC, cell proliferation (CP)- ACAATGTCAG, Drought responsive (DR)- ACGCKTAGGG, Flower development (FD)- CACTTSTYCC; TTGACKTGTC, Flower timing (FT)- YTTGTYYTTC; AAACCACTAT, Meristematic responsive (MR)- CCCATGTCTT; CTTCATCTHT, Seed development (SD)- GAYGCATGTG; GCATGCATGC, Gibberellin responsive (GR)- CCGGCCSTTR were identified (black boxes represents presence of individual motifs) acoss the various members of the clade and marked. Supplementary file 5 (TIF 13414 kb)

10725_2020_578_MOESM6_ESM.pdf

Supplementary Figure 6 Presence or absence of cis-regulatory motif in the promoter sequences of MIR159 among various plant species. Cis-motifs involved in different processes like cell differentiation (CD)- ACTCTCTATC, cell proliferation (CP)- ACAATGTCAG, Drought responsive (DR)- ACGCKTAGGG, Flower development (FD)- CACTTSTYCC; TTGACKTGTC, Flower timing (FT)- YTTGTYYTTC; AAACCACTAT, Meristematic responsive (MR)- CCCATGTCTT; CTTCATCTHT, Seed development (SD)- GAYGCATGTG; GCATGCATGC, Gibberellin responsive (GR)- CCGGCCSTTR were identified (black boxes indicate presence of individual motifs). Supplementary file 6 (PDF 192 kb)

10725_2020_578_MOESM7_ESM.tif

Supplementary Figure 7 Comparative study of intergenic space and upstream region of MIR159A-02 (upper left), MIR159A07-1 (upper right), MIR159A07-2 (lower left) and MIR159C-A05 (lower right) between Arabidopsis thaliana and Brassica rapa var chiifu. Sliding window analysis using DnaSP reveals conserved (valleys) and divergent (peaks) region among promoters of Arabidopsis thaliana and Brassica rapa var chiifu. The line below the sliding window analysis shows position of cis-regulatory motifs on the promoter region (see supplementary file 7 for details about individual motifs; and supplementary figure 7) on the promoter of Arabidopsis thaliana and Brassica rapa var chiifu). Arrow marked as F1, F2, F3 and R denote position of primers for cloning of full-length and nested-deletion series. Supplementary file 7 (TIF 7205 kb)

10725_2020_578_MOESM8_ESM.pptx

Supplementary Figure 8 Diagrammatic representation of the promoter::reporter constructs and Multiple sequence alignment between promoter homologs of Arabidopsis thaliana col-0 and Brassica juncea var. Varuna. A: MIR159A; B: MIR159B; C: MIR159C. Supplementary file 8 (PPTX 3139 kb)

Supplementary file 9 (DOCX 17 kb)

Supplementary file 10 (DOCX 49 kb)

Supplementary file 11 (TXT 89 kb)

Supplementary file 12 (PDF 3547 kb)

Supplementary file 13 (PDF 209 kb)

Supplementary file 14 (DOC 298 kb)

Supplementary file 15 (DOCX 29 kb)

Supplementary file 16 (DOCX 14 kb)

Supplementary file 17 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, C., Joshi, G., Chaudhary, D. et al. Sequence and functional analysis of cis-elements associated with MIR159 loci from Brassica juncea reveal functional diversification and complex transcriptional regulation. Plant Growth Regul 90, 279–306 (2020). https://doi.org/10.1007/s10725-020-00578-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-020-00578-4

Keywords

Navigation