Abe H, Nakamura K, Morishita T, Uchiyama M, Takatsuto S, Ikekawa N (1984) Endogenous brassinosteroids of the rice plant—castasterone and dolichosterone. Agric Biol Chem Tokyo 48(4):1103–1104. https://doi.org/10.1080/00021369.1984.10866278
CAS
Article
Google Scholar
Ananieva EA, Christov KN, Popova LP (2004) Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to Paraquat. J Plant Physiol 161(3):319–328. https://doi.org/10.1078/0176-1617-01022
CAS
Article
PubMed
Google Scholar
Anwar A, Liu YM, Dong RR, Bai LQ, Yu XC, Li YS (2018) The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biol Res. 51:46. https://doi.org/10.1186/s40659-018-0195-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Bajguz A (2007) Metabolism of brassinosteroids in plants. Plant Physiol Biochem 45(2):95–107. https://doi.org/10.1016/j.plaphy.2007.01.002
CAS
Article
PubMed
Google Scholar
Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47(1):1–8. https://doi.org/10.1016/j.plaphy.2008.10.002
CAS
Article
PubMed
Google Scholar
Bandurska H, Stroinski A (2003) ABA and proline accumulation in leaves and roots of wild (Hordeum spontaneum) and cultivated (Hordeum vulgare 'Maresi') barley genotypes under water deficit conditions. Acta Physiol Plant 25(1):55–61. https://doi.org/10.1007/s11738-003-0036-x
CAS
Article
Google Scholar
Bravo LA, Zuniga GE, Alberdi M, Corcuera LJ (1998) The role of ABA in freezing tolerance and cold acclimation in barley. Physiol Plant 103(1):17–23
CAS
Article
Google Scholar
Busconi M, Bosco CD, Crosatti C, Baldi P, Mare C, Grossi M, Mastrangelo AM, Rizza F, Cattivelli L, Stanca AM (2001) The cold-regulated genes are involved in the physiological response of barley to cold environment. ICL Agric Sci 14:17–27
Google Scholar
Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172(1):557–567. https://doi.org/10.1534/genetics.104.038489
CAS
Article
PubMed
PubMed Central
Google Scholar
Ceccarelli S, Grando S, Maatougui M, Michael M, Slash M, Haghparast R, Rahmanian M, Taheri A, Al-Yassin A, Benbelkacem A, Labdi M, Mimoun H, Nachit M (2010) Plant breeding and climate changes. J Agric Sci 148:627–637. https://doi.org/10.1017/s0021859610000651
Article
Google Scholar
Cistue L, Valles MP, Echavarri B, Sanz JM, Castillo A (2003) Barley anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Springer, New York, pp 29–34
Chapter
Google Scholar
Deveraj VR, Dsouza M (2018) Signaling molecules and their involvement in abiotic and biotic stress response crosstalk in plants. In: Ramakrishna A, Gill SS (eds) Metabolic adaptation in plants during abiotic stress. CRC Press, Boca Raton, pp 295–310
Chapter
Google Scholar
Dhabhar FS (2018) The short-term stress response—mother nature's mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity. Front Neuroendocrinol 49:175–192. https://doi.org/10.1016/j.yfrne.2018.03.004
Article
PubMed
PubMed Central
Google Scholar
Eremina M, Unterholzner SJ, Rathnayake AI, Castellanos M, Khan M, Kugler KG, May ST, Mayer KFX, Rozhon W, Poppenberger B (2016) Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proc Natl Acad Sci USA 113(40):E5982–E5991. https://doi.org/10.1073/pnas.1611477113
CAS
Article
PubMed
Google Scholar
Esim N, Atici O (2015) Effects of exogenous nitric oxide and salicylic acid on chilling-induced oxidative stress in wheat (Triticum aestivum). Front Life Sci 8(2):124–130. https://doi.org/10.1080/21553769.2014.998299
CAS
Article
Google Scholar
Fujii H (2014) Abscisic acid implication in plant growth and stress responses. In: Tran L-S, Pal S (eds) Phytohormones: a window to metabolism, signaling and biotechnological applications. Springer, New York, pp 37–54
Chapter
Google Scholar
Gamoh K, Okamoto N, Takatsuto S, Tejima I (1990) Determination of traces of natural brassinosteroids as dansylaminophenylboronates by liquid-chromatography with fluorimetric detection. Anal Chim Acta 228(1):101–105. https://doi.org/10.1016/s0003-2670(00)80484-5
CAS
Article
Google Scholar
Gołębiowska-Pikania G, Kopeć P, Surówka E, Janowiak F, Krzewska M, Dubas E, Nowicka A, Kasprzyk J, Ostrowska A, Malaga S, Hura T, Żur I (2017a) Changes in protein abundance and activity induced by drought during generative development of winter barley (Hordeum vulgare L.). J Proteomics 169(Supplement C):73–86. https://doi.org/10.1016/j.jprot.2017.07.016
CAS
Article
PubMed
Google Scholar
Gołębiowska-Pikania G, Kopeć P, Surówka E, Krzewska M, Dubas E, Nowicka A, Rapacz M, Wójcik-Jagła M, Malaga S, Żur I (2017b) Changes in protein abundance and activity involved in freezing tolerance acquisition in winter barley (Hordeum vulgare L.). J Proteomics 169:58–72. https://doi.org/10.1016/j.jprot.2017.08.019
CAS
Article
PubMed
Google Scholar
Gruszka D, Gorniak M, Glodowska E, Wierus E, Oklestkova J, Janeczko A, Maluszynski M, Szarejko I (2016a) A reverse-genetics mutational analysis of the barley HvDWARF gene results in identification of a series of alleles and mutants with short stature of various degree and disturbance in BR biosynthesis allowing a new insight into the process. Int J Mol Sci 17(4):600. https://doi.org/10.3390/ijms17040600
CAS
Article
PubMed Central
Google Scholar
Gruszka D, Janeczko A, Dziurka M, Pociecha E, Oklestkova J, Szarejko I (2016b) Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reaction to drought stress. Front Plant Sci 7:1824. https://doi.org/10.3389/fpls.2016.01824
Article
PubMed
PubMed Central
Google Scholar
Gusta LV, Trischuk R, Weiser CJ (2005) Plant cold acclimation: the role of abscisic acid. J Plant Growth Regul 24(4):308–318
CAS
Article
Google Scholar
Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68(1):14–25. https://doi.org/10.1016/j.envexpbot.2009.08.005
CAS
Article
Google Scholar
Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12(8):343–351. https://doi.org/10.1016/j.tplants.2007.06.013
CAS
Article
PubMed
Google Scholar
Humphreys MW, Gasior D, Lesniewska-Bocianowska A, Zwierzykowski Z, Rapacz M (2007) Androgenesis as a means of dissecting complex genetic and physiological controls: selecting useful gene combinations for breeding freezing tolerant grasses. Euphytica 158(3):337–345. https://doi.org/10.1007/s10681-006-9240-2
Article
Google Scholar
Hura T, Tyrka M, Hura K, Ostrowska A, Dziurka K (2017) QTLs for cell wall-bound phenolics in relation to the photosynthetic apparatus activity and leaf water status under drought stress at different growth stages of triticale. Mol Genet Genomics 292(2):415–433. https://doi.org/10.1007/s00438-016-1276-y
CAS
Article
PubMed
Google Scholar
Jacquard C, Wojnarowiez G, Clement C (2003) Anther culture in barley. In: Małuszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Springer, New York, pp 21–28
Chapter
Google Scholar
Janda T, Gondor OK, Yordanova R, Szalai G, Pal M (2014) Salicylic acid and photosynthesis: signalling and effects. Acta Physiol Plant 36(10):2537–2546. https://doi.org/10.1007/s11738-014-1620-y
CAS
Article
Google Scholar
Janeczko A (2016) Presence, transport and physiological activity of brassinosteroids in crop plants from Poaceae and Fabaceae family. In: Monograph of the Institute of Plant Physiology, Polish Academy of Sciences, vol 17. Institute of Plant Physiology, Polish Academy of Sciences, Cracow (in Polish)
Google Scholar
Janeczko A, Biesaga-Kościelniak J, Oklestkova J, Filek M, Dziurka M, Szarek-Łukaszewska G, Kościelniak J (2010) Role of 24-epibrassinolide in wheat production: physiological effects and uptake. J Agron Crop Sci 196(4):311–321. https://doi.org/10.1111/j.1439-037X.2009.00413.x
CAS
Article
Google Scholar
Janeczko A, Pociecha E, Dziurka M, Jurczyk B, Libik-Konieczny M, Oklestkova J, Novak O, Pilarska M, Filek M, Rudolphi-Skórska E (2019) Changes in content of steroid regulators during cold hardening of winter wheat-steroid physiological/biochemical activity and impact on frost resistance. Plant Physiol Biochem 139:215–228
CAS
Article
Google Scholar
Janeczko A, Swaczynova J (2010) Endogenous brassinosteroids in wheat treated with 24-epibrassinolide. Biol Plant 54(3):477–482. https://doi.org/10.1007/s10535-010-0084-1
CAS
Article
Google Scholar
Joo SH, Jang MS, Kim MK, Lee JE, Kim SK (2015) Biosynthetic relationship between C-28-brassinosteroids and C-29-brassinosteroids in rice (Oryza sativa) seedlings. Phytochemistry 111:84–90. https://doi.org/10.1016/j.phytochem.2014.11.006
CAS
Article
PubMed
Google Scholar
Jumali SS, Said IM, Ismail I, Zainal Z (2011) Genes induced by high concentration of salicylic acid in Mitragyna speciosa. Aust J Crop Sci 5(3):293–300
Google Scholar
Kadlecova Z, Faltus M, Prasil I (2000) Relationship between abscisic acid content, dry weight and freezing tolerance in barley cv. Lunet. J Plant Physiol 157(3):291–297
CAS
Article
Google Scholar
Kalemba EM, Janowiak F, Pukacka S (2009) Desiccation tolerance acquisition in developing beech (Fagus sylvatica L.) seeds: the contribution of dehydrin-like protein. Trees Struct Funct 23(2):305–315. https://doi.org/10.1007/s00468-008-0278-8
CAS
Article
Google Scholar
Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462. https://doi.org/10.3389/fpls.2015.00462
Article
PubMed
PubMed Central
Google Scholar
Li J, Yang P, Kang JG, Gan YT, Yu JH, Calderon-Urrea A, Lyu J, Zhang GB, Feng Z, Xie JM (2016) Transcriptome analysis of pepper (Capsicum annuum) revealed a role of 24-epibrassinolide in response to chilling. Front Plant Sci 7:1281. https://doi.org/10.3389/fpls.2016.01281
Article
PubMed
PubMed Central
Google Scholar
Liu W, Chen L, Zhang SL, Hu FY, Wang Z, Lyu J, Wang B, Xiang H, Zhao RP, Tian ZX, Ge S, Wang W (2019) Decrease of gene expression diversity during domestication of animals and plants. BMC Evol Biol 19:19. https://doi.org/10.1186/s12862-018-1340-9
Article
PubMed
PubMed Central
Google Scholar
Malaga S, Krzewska M, Nowicka A, Dubas E, Ostrowska A, Wojcik-Jagla M, Hura T, Rapacz M, Żur I (2016) Increasing tolerance to abiotic stresses by haplodiploidization in Hordeum vulgare. In: Grzesiak M, Rzepka A, Hura T, Grzesiak S (eds) Plant functioning under environmental stress. The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Cracow, pp 37–46
Google Scholar
Moravcova S, Tuma J, Ducaiova ZK, Waligorski P, Kula M, Saja D, Slomka A, Baba W, Libik-Konieczny M (2018) Influence of salicylic acid pretreatment on seeds germination and some defence mechanisms of Zea mays plants under copper stress. Plant Physiol Biochem 122:19–30. https://doi.org/10.1016/j.plaphy.2017.11.007
CAS
Article
PubMed
Google Scholar
Murelli C, Rizza F, Albini FM, Dulio A, Terzi V, Cattivelli L (1995) Metabolic changes associated with cold-acclimation in contrasting cultivars of barley. Physiol Plant 94(1):87–93
CAS
Article
Google Scholar
Mutlu S, Karadagoglu O, Atici O, Nalbantoglu B (2013) Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast. Biol Plant 57(3):507–513. https://doi.org/10.1007/s10535-013-0322-4
CAS
Article
Google Scholar
Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control of seed dormancy and germination. Seed Sci Res 20(2):55–67. https://doi.org/10.1017/s0960258510000012
CAS
Article
Google Scholar
Oklestkova J, Tarkowska D, Eyer L, Elbert T, Marek A, Smrzova Z, Novak O, Franek M, Zhabinskii VN, Strnad M (2017) Immunoaffinity chromatography combined with tandem mass spectrometry: a new tool for the selective capture and analysis of brassinosteroid plant hormones. Talanta 170:432–440. https://doi.org/10.1016/j.talanta.2017.04.044
CAS
Article
PubMed
Google Scholar
Parent B, Hachez C, Redondo E, Simonneau T, Chaumont F, Tardieu F (2009) Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant Physiol 149(4):2000–2012. https://doi.org/10.1104/pp.108.130682
CAS
Article
PubMed
PubMed Central
Google Scholar
Pociecha E, Dziurka M, Oklestkova J, Janeczko A (2016) Brassinosteroids increase winter survival of winter rye (Secale cereale L.) by affecting photosynthetic capacity and carbohydrate metabolism during the cold acclimation process. Plant Growth Regul 80(2):127–135. https://doi.org/10.1007/s10725-016-0149-z
CAS
Article
Google Scholar
Pociecha E, Płażek A, Janowiak F, Waligórski P, Zwierzykowski Z (2009) Changes in abscisic acid, salicylic acid and phenylpropanoid concentrations during cold acclimation of androgenic forms of Festulolium (Festuca pratensis × Lolium multiflorum) in relation to resistance to pink snow mould (Microdochium nivale). Plant Breed 128(4):397–403. https://doi.org/10.1111/j.1439-0523.2009.01664.x
CAS
Article
Google Scholar
Popova LP, Tsonev TD, Lazova GN, Stoinova ZG (1996) Drought- and ABA-induced changes in photosynthesis of barley plants. Physiol Plant 96(4):623–629. https://doi.org/10.1034/j.1399-3054.1996.960411.x
CAS
Article
Google Scholar
Quarrie SA, Whitford PN, Appleford NEJ, Wang TL, Cook SK, Henson IE, Loveys BR (1988) A monoclonal antibody to (S) abscisic acid: its characterisation and use in a radioimmunoassay for measuring abscisic acid in crude extracts of cereal and lupin leaves. Planta 173:330–339
CAS
Article
Google Scholar
Rajashekar CB (2016) Molecular responses and mechanisms of plant adaptation to cold and freezing stress. In: Huang B (ed) Plant–environment interactions. CRC Press, Boca Raton, pp 47–68
Google Scholar
Rapacz M, Sasal M, Gut M (2011) Chlorophyll fluorescence-based studies of frost damage and the tolerance for cold-induced photoinhibition in freezing tolerance analysis of triticale (xTriticosecale Wittmack). J Agron Crop Sci 197(5):378–389. https://doi.org/10.1111/j.1439-037X.2011.00472.x
CAS
Article
Google Scholar
Rapacz M, Tyrka M, Gut M, Mikulski W (2010) Associations of PCR markers with freezing tolerance and photosynthetic acclimation to cold in winter barley. Euphytica 175(3):293–301. https://doi.org/10.1007/s10681-010-0127-x
CAS
Article
Google Scholar
Rapacz M, Tyrka M, Kaczmarek W, Gut M, Wolanin B, Mikulski W (2008) Photosynthetic acclimation to cold as a potential physiological marker of winter barley freezing tolerance assessed under variable winter environment. J Agron Crop Sci 194(1):61–71. https://doi.org/10.1111/j.1439-037X.2007.00292.x
Article
Google Scholar
Reid JB, Symons GM, Ross JJ (2010) Regulation of gibberellin and brassinosteroid biosynthesis by genetic, environmental and hormonal factors. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Springer, Dordrecht, pp 179–203. https://doi.org/10.1007/978-1-4020-2686-7_9
Chapter
Google Scholar
Sadura I, Janeczko A (2018) Physiological and molecular mechanisms of brassinosteroid-induced tolerance to high and low temperature in plants. Biol Plant 62(4):601–616. https://doi.org/10.1007/s10535-018-0805-4
CAS
Article
Google Scholar
Sadura I, Pociecha E, Dziurka M, Oklestkova J, Novak O, Gruszka D, Janeczko A (2019) Mutations in the HvDWARF, HvCPD and HvBRI1 genes-involved in brassinosteroid biosynthesis/signalling: altered photosynthetic efficiency, hormonal homeostasis and tolerance to high/low temperatures in barley. J Plant Growth Regul. https://doi.org/10.1007/s00344-019-09914-z
Article
Google Scholar
Schmid K, Kilian B, Russell J (2018) Barley domestication, adaptation and population genomics. In: Stein N, Muehlbauer GJ (eds) The barley genome. Springer, Cham, pp 317–336. https://doi.org/10.1007/978-3-319-92528-8_17
Chapter
Google Scholar
Seiler C, Harshavardhan VT, Reddy PS, Hensel G, Kumlehn J, Eschen-Lippold L, Rajesh K, Korzun V, Wobus U, Lee J, Selvaraj G, Sreenivasulu N (2014) Abscisic acid flux alterations result in differential abscisic acid signaling responses and impact assimilation efficiency in barley under terminal drought stress. Plant Physiol 164(4):1677–1696. https://doi.org/10.1104/pp.113.229062
CAS
Article
PubMed
PubMed Central
Google Scholar
Tasgin E, Atici O, Nalbantoglu B (2003) Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul 41(3):231–236. https://doi.org/10.1023/B:GROW.0000007504.41476.c2
CAS
Article
Google Scholar
Tommasini L, Svensson JT, Rodriguez EM, Wahid A, Malatrasi M, Kato K, Wanamaker S, Resnik J, Close TJ (2008) Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). Funct Integr Genomics 8(4):387–405
CAS
Article
Google Scholar
Trejo CL, Clephan AL, Davies WJ (1995) How do stomata read abscisic acid signals? Plant Physiol 109:803–811
CAS
Article
Google Scholar
Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol. https://doi.org/10.1186/s12870-016-0771-y
Article
PubMed
PubMed Central
Google Scholar
Vicente MRS, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62(10):3321–3338. https://doi.org/10.1093/jxb/err031
CAS
Article
Google Scholar
Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00161
Article
PubMed
PubMed Central
Google Scholar
Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206. https://doi.org/10.1146/annurev.phyto.050908.135202
CAS
Article
PubMed
Google Scholar
Walker-Simmons MK, Abrams SR (1991) Use of ABA immunoassays. In: Davies WJ, Jones HG (eds) Abscisic acid, physiology and biochemistry. Bios Scientific Publishers, Oxford, pp 53–63
Google Scholar
Walker DJ, Romero P, Correal E (2010) Cold tolerance, water relations and accumulation of osmolytes in Bituminaria bituminosa. Biol Plant 54(2):293–298. https://doi.org/10.1007/s10535-010-0051-x
Article
Google Scholar
Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4(3):162–176. https://doi.org/10.1016/j.cj.2016.01.010
Article
Google Scholar
Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37(3):326–339
CAS
Article
Google Scholar
Yuan S, Lin HH (2008) Role of salicylic acid in plant abiotic stress. Z Naturforsch C 63(5–6):313–320
CAS
Article
Google Scholar
Zhang JH, Jia WS, Yang JC, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97(1):111–119
Article
Google Scholar
Zullo MAT, Kohout L (2004) Semisystematic nomenclature of brassinosteroids. Plant Growth Regul 42(1):15–28. https://doi.org/10.1023/b:grow.0000014898.30414.33
Article
Google Scholar
Żur I, Dubas E, Krzewska M, Waligórski P, Dziurka M, Janowiak F (2015) Hormonal requirements for effective induction of microspore embryogenesis in triticale (x Triticosecale Wittm.) anther cultures. Plant Cell Rep 34(1):47–62. https://doi.org/10.1007/s00299-014-1686-4
CAS
Article
PubMed
Google Scholar